Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán

Bài toán bất đẳng thức, cực trị (tìm giá trị lớn nhất – giá trị nhỏ nhất) luôn là bài toán khó nhất trong đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán nhằm chọn lọc học sinh giỏi – xuất sắc môn Toán vào các lớp chuyên Toán tại các trường THPT chuyên. Nhằm giúp các em học sinh lớp 9 có thể ôn tập bài toán bất đẳng thức và bài toán cực trị, THCS. giới thiệu đến các em tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán, tài liệu được tổng hợp bởi tác giả Trịnh Bình. Trích dẫn nội dung tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh lớp 10 môn Toán: + Cho các số dương a, b, c dương thỏa mãn abc = a + b + c + 2. Tìm giá trị lớn nhất của biểu thức P = 1/√(a^2 + b^2) + 1/√(b^2 + c^2) + 1/√(c^2 + a^2) (TS10 / chuyên Phan Bội Châu – Nghệ An / 2019 – 2020). + Cho x, y, z là các số thực thuộc đoạn [0;2] thỏa mãn điều kiện: x + y + z = 3. a) Chứng minh rằng: x^2 + y^2 + z^2 < 6. b) Tìm giá trị lớn nhất của biểu thức: P = x^3 + y^3 + z^3 – 3xyz (TS10 / chuyên TP. Hồ Chí Minh / 2019 – 2020). [ads] + Cho x, y, z là các số thực dương thỏa mãn: xy + yz + 4zx = 32. Tìm giá trị nhỏ nhất của biểu thức: P = x^2 + 16y^2 + 16z^2 (TS10 / chuyên Hòa Bình / 2019 – 2020). + Cho các số thực không âm a, b, c sao cho ab + bc + ca = 3 . Chứng minh rằng: 1/(a^2 + 2) + 1/(b^2 + 2) + 1/(c^2 + 2) ≤ 1 (TS10 / chuyên Phú Thọ / 2009 – 2010). + Giả sử x, y, z là những số thực thoả mãn điều kiện 0 ≤ x, y, z ≤ 2 và x + y + z = 3. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức M = x^4 + y^4 + z^4 + 12(1 – x)(1 – y)(1 – z) (TS10 / chuyên KHTN – Hà Nội / 2009 – 2010).

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải phương trình nghiệm nguyên
Nội dung Phương pháp giải phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Phương pháp giải phương trình nghiệm nguyên Phương pháp giải phương trình nghiệm nguyên Tài liệu này bao gồm 38 trang, hướng dẫn một số phương pháp giải phương trình nghiệm nguyên. Đây là loại bài toán thường xuyên xuất hiện trong các đề thi học sinh giỏi Toán cấp THCS. A. Kiến thức cần nhớ: 1. Phương trình nghiệm nguyên là phương trình có nhiều ẩn số, với tất cả các hệ số đều là số nguyên và các nghiệm cần tìm cũng là số nguyên. 2. Phương trình nghiệm nguyên không có công thức giải tổng quát, chỉ có cách giải cụ thể cho từng dạng bài toán. Trong tài liệu này, chúng tôi giới thiệu qua một số ví dụ và bài tập cụ thể. 3. Cách giải phương trình nghiệm nguyên là rất đa dạng, đòi hỏi học sinh phải phân tích, dự đoán, đối chiếu và tư duy sáng tạo, logic để tìm ra nghiệm. B. Các dạng bài tập: - Dạng 1: Phương pháp đưa về phương trình ước số. - Dạng 2: Phương pháp sử dụng tính chất chia hết. - Dạng 3: Phương pháp xét số dư từng vế. - Dạng 4: Phương pháp đưa về dạng tổng. - Dạng 5: Phương pháp sử dụng bất đẳng thức. - Dạng 6: Phương pháp đánh giá. - Dạng 7: Phương pháp giải lùi vô hạn, nguyên tắc cực hạn. C. Bài tập tự luyện: Để nắm vững phương pháp giải phương trình nghiệm nguyên, học sinh nên thực hành nhiều bài tập tự luyện để rèn luyện kỹ năng và cải thiện hiệu suất giải toán.
Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng
Nội dung Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Bản PDF - Nội dung bài viết Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Tài liệu này bao gồm 139 trang, được lựa chọn và hướng dẫn cách giải các bài toán liên quan đến việc chứng minh đẳng thức, bất đẳng thức trong hình học phẳng. Đây là công cụ hữu ích giúp học sinh hiểu rõ chương trình Toán lớp 9 và ôn tập cho kỳ thi vào lớp 10 môn Toán. Cụ thể, tài liệu này bao gồm các bài toán khác nhau từ lớp 1 đến lớp 9. Các bài toán được chia thành từng cấp độ, từ những vấn đề đơn giản như sử dụng định lí Pythagore, tam giác bằng nhau, đến những bài toán phức tạp hơn như sử dụng quan hệ góc, cạnh đối diện, và bất đẳng thức tam giác. Bên cạnh đó, tài liệu cũng giới thiệu các phương pháp giải bài toán hình học bằng cách sử dụng diện tích, hình bình hành, tam giác đồng dạng và các hệ thức quen thuộc như định lí Thales, đường phân giác trong tam giác. Với những bài toán và cách giải đa dạng như vậy, tài liệu này sẽ giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để giải quyết các vấn đề liên quan đến đẳng thức, bất đẳng thức hình học phẳng.
Bí quyết giải toán số học THCS theo chủ đề
Nội dung Bí quyết giải toán số học THCS theo chủ đề Bản PDF - Nội dung bài viết Bí quyết giải toán số học THCS Bí quyết giải toán số học THCS Tài liệu Bí quyết giải toán số học THCS được biên soạn bởi tác giả: Huỳnh Kim Linh và Nguyễn Quốc Bảo, gồm 525 trang. Tài liệu này trình bày những bí quyết giải toán số học THCS theo chủ đề, chú trọng vào một dạng toán thường gặp trong các đề thi chọn học sinh giỏi Toán từ lớp 6 đến lớp 9. Tài liệu này sẽ giúp bạn hiểu rõ hơn về cách giải các dạng toán số học THCS, từ đơn giản đến phức tạp, giúp bạn tự tin hơn khi tham gia các kỳ thi Toán. Bên cạnh đó, việc biên soạn bởi các tác giả có kinh nghiệm trong giảng dạy môn Toán sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để thành công trong việc giải các bài toán số học THCS.
Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo
Nội dung Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Được biên soạn bởi tác giả Nguyễn Quốc Bảo, tài liệu này gồm 327 trang, giúp hướng dẫn các phương pháp chứng minh bất đẳng thức. Bất đẳng thức là dạng toán khó thường xuất hiện trong các đề thi chọn học sinh giỏi Toán lớp 8/ Toán lớp 9, đề tuyển sinh lớp 10 môn Toán. Phần I của tài liệu bao gồm các phương pháp chứng minh bất đẳng thức như sau: Chủ đề 1: Phương pháp dùng định nghĩa trong chứng minh bất đẳng thức. Chủ đề 2: Phương pháp biến đổi tương đương trong chứng minh bất đẳng thức. Chủ đề 3: Phương pháp phản chứng trong chứng minh bất đẳng thức. Chủ đề 4: Phương pháp tam thức bậc hai trong chứng minh bất đẳng thức. Và các chủ đề khác như sử dụng tính chất tỷ số, làm trội, làm giảm, quy nạp toán học, dãy số, AM-GM (Cauchy), Bunyakovsky, có biến trên một đoạn, kĩ thuật đồng bậc hóa, chuẩn hóa, sử dụng đẳng thức, nguyên lý Dirichlet, sắp xếp biến, hàm số bậc nhất, dồn biến, hình học, đổi biến, cực trị, hệ số bất định. Phần II của tài liệu tập trung vào tuyển chọn các bài toán bất đẳng thức hay thường xuất hiện trong các kì thi chọn học sinh giỏi Toán. Bí quyết chứng minh bất đẳng thức của Nguyễn Quốc Bảo là nguồn tư liệu hữu ích giúp học sinh nắm vững và áp dụng thành thục các phương pháp chứng minh bất đẳng thức trong quá trình học tập của mình.