Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thừa Thiên Huế

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 03/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thừa Thiên Huế : + Một người đi xe đạp với vận tốc không đổi từ A đến B cách nhau 36 km. Trên cùng tuyến đường đó, khi đi từ B trở về A, người này đi với vận tốc lớn hơn 3 km/h so với vận tốc khi đi từ A đến B vì vậy thời gian về ít hơn thời gian đi là 36 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho tam giác ABC có ba góc nhọn, AB > AC và nội tiếp đường tròn (O). Tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại D. Gọi E là hình chiếu vuông góc của O trên đường thẳng BC. a) Chứng minh AOED là tứ giác nội tiếp. b) Đường tròn ngoại tiếp tứ giác AOED cắt đường tròn (O) tại điểm thứ hai là F (F không trùng với A). Chứng minh DF là tiếp tuyến của đường tròn (O) và AB FB AC FC. c) Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại G. Chứng minh ba điểm A, F, G thẳng hàng. + Cho tam giác OBC vuông tại O. Nếu quay tam giác OBC một vòng quanh cạnh OB cố định thì được một hình nón có thể tích bằng 800pi cm3. Nếu quay tam giác OBC một vòng quanh cạnh OC cố định thì được một hình nón có thể tích bằng 1920pi cm3. Tính OB và OC.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GDĐT TP Hồ Chí Minh Đề tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GDĐT TP Hồ Chí Minh Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào chiều Chủ Nhật ngày 12 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết. Cụ thể, trong đề thi có các bài toán như sau: + Bài toán 1: Cho hình vuông ABCD. Trên các cạnh BC và CD lần lượt lấy các điểm M và N sao cho MAN = 45°. Hãy chứng minh rằng MN tiếp xúc với đường tròn tâm A bán kính AB. + Bài toán 2: Cho tam giác ABC nhọn (AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường thẳng BC tại I. Đường thẳng qua A vuông góc với IH tại K và cắt BC tại M. Chứng minh rằng tứ giác IFKC nội tiếp và M là trung điểm của BC. + Bài toán 3: Số nguyên dương n được gọi là “số tốt” nếu n + 1 và 8n + 1 đều là các số chính phương. Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số. Tìm các số nguyên k thỏa mãn |k| < 10 và 4n + k là hợp số với mọi n là “số tốt”. Mong rằng các em học sinh sẽ ôn tập và làm bài thi tốt. Chúc quý thầy, cô giáo và các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Nông
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD ĐT Đắk Nông Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD ĐT Đắk Nông Chào các thầy cô và các em học sinh lớp 9, hôm nay Sytu xin giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Đắk Nông. Đề thi này gồm các câu hỏi đa dạng và thú vị, hãy cùng tìm hiểu cụ thể nhé! Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Đắk Nông: Bài toán 1: Trên bảng đang có hai số 1 và 2. Thực hiện ghi thêm số lên bảng theo quy tắc sau: Mỗi lần viết lên bảng một số c = ab + a + b với hai số a và b đã có trên bảng. Hỏi sau một số lần hữu hạn có thể viết được số 2022 lên bảng không? Bài toán 2: Cho đường tròn (O) và điểm M nằm ngoài đường tròn (O). Từ M kẻ hai tiếp tuyến MA, MB đến (O) (A, B là tiếp điểm). Kẻ cát tuyến MNP (MN < MP). K là trung điểm của NP. a) Chứng minh các điểm A, K, O, B cùng thuộc một đường tròn và xác định tâm của đường tròn đó. b) Chứng minh KF là phân giác trong của AKB từ đó suy ra EA.FB = EB.FA. c) Chứng minh khi cát tuyến MNP thay đổi thì trọng tâm tam giác MNP luôn thuộc một đường tròn cố định. Bài toán 3: Cho ba số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức ...
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh THPT Môn Toán Năm 2022-2023 Sở GD&ĐT Bình Định Đề Thi Tuyển Sinh THPT Môn Toán Năm 2022-2023 Sở GD&ĐT Bình Định Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ Thi sẽ diễn ra vào ngày 11 tháng 06 năm 2022. Dưới đây là một số câu hỏi trong đề thi: Cho phương trình: $2x^2 - (m + 1)x + m - 1 = 0$. Tìm các giá trị của m để phương trình có hai nghiệm và hiệu hai nghiệm bằng tích của chúng. Trong hệ toạ độ Oxy cho đường thẳng (d): y = -x + 4 và điểm A(2;2). a) Chứng minh điểm A thuộc đường thẳng (d). b) Tìm a sao cho parabol (P): y = ax^2 đi qua điểm A. Với giá trị a tìm được, hãy xác định toạ độ điểm B là giao điểm thứ hai của (d) và (P). c) Tính diện tích tam giác OAB. Tam giác vuông có cạnh huyền bằng 13cm, diện tích là 30cm². Hãy tính độ dài các cạnh góc vuông của tam giác. Hy vọng đề thi sẽ giúp các bạn học sinh ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em đạt kết quả cao trong kỳ thi tuyển sinh!
Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề tuyển sinh THPT chuyên môn Toán năm 2022 - 2023 sở GD ĐT Nghệ An Đề tuyển sinh THPT chuyên môn Toán năm 2022 - 2023 sở GD ĐT Nghệ An Xin chào quý thầy, cô và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến quý vị đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 - 2023 tại sở Giáo dục và Đào tạo tỉnh Nghệ An. Đây là đề thi dành cho các thí sinh đăng ký thi vào trường THPT chuyên Phan Bội Châu và trường THPT chuyên ĐH Vinh, tỉnh Nghệ An. Đề thi bao gồm đáp án và lời giải chi tiết, do Nguyễn Nhất Huy và thầy Trịnh Văn Luân thực hiện. Một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GD&ĐT Nghệ An: + Trong tam giác nhọn ABC nội tiếp đường tròn (O), chứng minh rằng OD đồng quy với MH và 4 điểm A, O, D, P cùng nằm trên một đường tròn. + Tìm số tự nhiên n nhỏ nhất sao cho mọi tập hợp con gồm n phần tử của tập số tự nhiên từ 1 đến 2022 đều chứa 3 số đôi một nguyên tố cùng nhau. + Chứng minh rằng 2n + 36 và 122n + 25 không thể cùng là số chính phương, với n là số nguyên dương. Hãy chuẩn bị kỹ càng và tự tin để vượt qua thách thức của kỳ thi tuyển sinh sắp tới. Chúc quý thầy, cô và các em đạt kết quả cao trong kỳ thi sắp tới!