Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập nguyên hàm, tích phân và ứng dụng - Diệp Tuân

Tài liệu gồm 301 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các dạng toán trắc nghiệm nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), các bài tập trong tài liệu đầy đủ các mức độ nhận thức: nhận biết (NB), thông hiểu (TH), vận dụng (VD) và vận dụng cao (VDC). Khái quát nội dung tài liệu bài tập nguyên hàm, tích phân và ứng dụng – Diệp Tuân: BÀI 1 . NGUYÊN HÀM. Dạng 1. Tìm họ nguyên hàm của các hàm cơ bản. Dạng 2. Sử dụng các kỹ thuật đặc biệt để tìm họ nguyên hàm của các hàm phức tạp. + Kỹ thuật 1. Nhân đa thức để tìm họ nguyên hàm có dạng tích của các đa thức. + Kỹ thuật 2. Sử dụng công thức lũy thừa để tìm họ nguyên hàm căn thức. + Kỹ thuật 3. Sử dụng công thức cộng lượng giác để tìm họ nguyên hàm của tích của các hàm lượng giác. + Kỹ thuật 4. Sử dụng công thức hạ bậc để tìm họ nguyên hàm của các hàm lượng giác có mũ bậc chẵn. + Kỹ thuật 5. Sử dụng kỹ thuật tách hạng tử, nhóm hạng tử, thêm bớt hạng tử để tìm họ nguyên hàm của các hàm phân thức hữu tỉ. BÀI 2 . CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM CƠ BẢN. Dạng 1. Phương pháp đổi biến số. Dạng 2. Phương pháp từng phần. + Loại 1. P(x) nhân sinx hoặc cosx trong đó P(x) là đa thức. + Loại 2. P(x) nhân e^(ax + b) trong đó P(x) là đa thức. + Loại 3. P(x) nhân ln(mx +  n) trong đó P(x) là đa thức. + Loại 4. e^x nhân sinx hoặc cosx. + Loại 5. Đổi biển rồi từng phần. Dạng 3. Phương pháp lấy nguyên hàm hai vế (tích phân hàm ẩn). [ads] BÀI 3 . TÍCH PHÂN. Dạng 1. Tính tích phân cơ bản. Dạng 2. Phương pháp đổi biến loại 1. Dạng 3. Phương pháp đổi biến loại 2. + Loại 1. Đổi biến hàm căn thức. + Loại 2. Đổi biến hàm lượng giác. + Loại 3. Đổi biến một số tích phân đặc biệt. Dạng 4. Phương pháp từng phần. + Bài toán 1. Tích phân từng phần thuộc dạng f(x) nhân ln(g(x)). + Bài toán 2. Tích phân từng phần thuộc dạng f(x) nhân sinax hoặc cosax hoặc e^ax. + Bài toán 3. Tích phân từng phần thuộc dạng e^ax nhân sinax hoặc cosax. BÀI 4 . ỨNG DỤNG TÍNH DIỆN TÍCH – THỂ TÍCH. Dạng 1. Tính diện tích hình phẳng giới hạn bởi một đồ thị hàm số y = f(x), trục hoành Ox và hai đường thẳng x = a, x = b. Dạng 2. Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x) và hai đường thẳng x = a, x = b. Dạng 3. Tính diện tích hình phẳng giới hạn bởi ba đồ thị hàm số. Dạng 4. Tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số có dạng x = f(y) và hai đường thẳng y = a, y = b. Dạng 5. Tính thể tích vật thể giới hạn bởi một đồ thị hàm số có dạng y = f(x), x = a, x = b và trục hoành y = 0 khi quay quanh trục hoành (Ox). Dạng 6. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số y = f(x), y = g(x), x = a, x = b khi quay quanh trục hoành. Dạng 7. Tính thể tích vật thể giới hạn bởi hai đồ thị hàm số x = f(y), x = g(y), y = a, y = b khi quay quanh trục tung Oy. Dạng 8. Ứng dụng trong thực tế tính vận tốc, quãng đường, diện tích và thể tích vật thể.

Nguồn: toanmath.com

Đọc Sách

400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Hoàng Tuyên và thầy giáo Minh Tâm, tuyển chọn 400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết; các câu hỏi và bài tập được phân loại thành 10 dạng toán; tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và ôn thi tốt nghiệp THPT môn Toán. + Dạng toán 1. Các phép toán số phức (Trang 3). + Dạng toán 2. Phần thực – phần ảo của số phức (Trang 10). + Dạng toán 3. Số phức liên hợp (Trang 13). + Dạng toán 4. Module số phức (Trang 17). + Dạng toán 5. Phương trình bậc nhất (Trang 22). + Dạng toán 6. Phương trình bậc hai & mối liên hệ giữa hai nghiệm (Trang 28). + Dạng toán 7. Phương trình bậc cao (Trang 44). + Dạng toán 8. Biểu diễn số phức (Trang 52). + Dạng toán 9. Tập hợp điểm biểu diễn số phức (Trang 66). + + Dạng toán 9.1. Tập hợp điểm biểu diễn là đường thẳng (Trang 66). + + Dạng toán 9.2. Tập hợp điểm biểu diễn là đường tròn (Trang 72). + + Dạng toán 9.3. Tập hợp điểm biểu diễn là đường Coníc (Trang 79). + Dạng toán 10. Max – min của module số phức (Trang 83).
Các dạng bài tập VDC số phức
Tài liệu gồm 57 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC số phức: CHỦ ĐỀ 1 . KHÁI NIỆM SỐ PHỨC VÀ CÁC PHÉP TOÁN CỦA SỐ PHỨC. Dạng 1: Thực hiện các phép toán của số phức, tìm phần thực phần ảo. Dạng 2. Tìm số phức liên hợp, tính môđun số phức. Dạng 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 4. Tìm số phức thỏa mãn điều kiện cho trước. Dạng 5: Bài toán tập hợp điểm biểu diễn số phức. CHỦ ĐỀ 2 . PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC. Dạng 1: Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2: Định lí Vi-ét và ứng dụng. Dạng 3: Phương trình quy về phương trình bậc hai. CHỦ ĐỀ 3 . CỰC TRỊ SỐ PHỨC. Dạng 1: Phương pháp hình học. Dạng 2: Phương pháp đại số.
Các dạng bài tập VDC cực trị số phức
Tài liệu gồm 15 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) cực trị số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC cực trị số phức: A. LÍ THUYẾT TRỌNG TÂM 1. Các bất đẳng thức thường dùng. 2. Một số kết quả đã biết. B. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. 1. Phương pháp giải. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. 2. Bài tập mẫu. Dạng 2 : Phương pháp đại số. 1. Phương pháp giải. 2. Bất đẳng thức Cauchy – Schwarz. 3. Bài tập mẫu.
Các dạng bài tập VDC phương trình bậc hai trên tập số phức
Tài liệu gồm 10 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình bậc hai trên tập số phức, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình bậc hai trên tập số phức: A. LÍ THUYẾT 1. Căn bậc hai của một phức. 2. Giải phương trình bậc hai với hệ số thực. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2: Định lí Vi-ét và ứng dụng. Dạng 3: Phương trình quy về phương trình bậc hai.