Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và phương pháp giải Toán 7 - Ngô Văn Thọ

Tài liệu gồm 166 trang phân dạng và hướng dẫn phương pháp giải Toán 7 toàn tập – Đại số và Hình học, tài liệu được biên soạn bởi thầy Ngô Văn Thọ. Trong mỗi chuyên đề (ứng với mỗi chương) đều được phân dạng chi tiết, nếu các bước giải toán, các vì dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. Nội dung tài liệu : A. PHẦN ĐẠI SỐ CHUYÊN ĐỀ I . SỐ HỮU TỈ + Dạng 1. Thực hiện phép tính + Dạng 2. Biểu diễn số hữu tỉ trên trục số + Dạng 3. So sánh số hữu tỉ + Dạng 4. Tìm điều kiện để một số là số hữu tỉ dương, âm, là số 0 (không dương không âm) + Dạng 5. Tìm các số hữu tỉ nằm trong một khoảng + Dạng 6. Tìm x để biểu thức nguyên + Dạng 7. Các bài toán tìm x + Dạng 8. Các bài toán tìm x trong bất phương trình + Dạng 9. các bài toán tính tổng theo quy luật CHUYÊN ĐỀ II . GIÁ TRỊ TUYỆT ĐỐI + Dạng 1. Tính giá trị biểu thức và rút gọn biểu thức + Dạng 2. |A(x)| = k (Trong đó A(x) là biểu thức chứa x, k là một số cho trước) + Dạng 3. |A(x)| = |B(x)| (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 4. |A(x)| = B(x) (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 5. Đẳng thức chứa nhiều dấu giá trị tuyệt đối + Dạng 6. Xét điều kiện bỏ dấu giá trị tuyệt đối hàng loạt + Dạng 7. Dạng hỗn hợp + Dạng 8. |A| + |B| = 0 + Dạng 9. |A| + |B| = |A + B| + Dạng 10. |f(x)| > a + Dạng 11. Tìm x sao cho |f(x)| < a + Dạng 12. Tìm cặp giá trị (x; y) nguyên thoả mãn đẳng thức chứa dấu giá trị tuyệt đối + Dạng 13. |A| + |B| < m với m > 0 + Dạng 14. Sử dụng bất đẳng thức. |a| + |b| ≥ |a + b| xét khoảng giá trị của ẩn số + Dạng 15. Sử dụng phương pháp đối lập hai vế của đẳng thức + Dạng 16. Tìm GTLN – GTNN của biểu thức CHUYÊN ĐỀ III . LŨY THỪA + Dạng 1. Tính giá trị biểu thức + Dạng 2. Các bài toán tìm x + Dạng 3. Các bài toán so sánh + Dạng 4. Các bài toán chứng minh chia hết CHUYÊN ĐỀ IV . TỈ LỆ THỨC + Dạng 1. Lập tỉ lệ thức từ các số đã cho + Dạng 2. Tìm x từ tỉ lệ thức + Dạng 3. Chứng minh tỉ lệ thức + Dạng 4. Cho dãy tỉ số bằng nhau và một tổng, tìm x, y + Dạng 5. Cho dãy tỉ số, tính giá trị một biểu thức + Dạng 6. Cho dãy tỉ số bằng nhau và một tích, tìm x, y + Dạng 7. Ứng dụng tỉ lệ thức chứng minh bất đẳng thức CHUYÊN ĐỀ V . TỈ LỆ THUẬN – TỈ LỆ NGHỊCH + Dạng 1. Tính hệ số tỉ lệ, biểu diễn x theo y, tính x (hoặc y) khi biết y (hoặc x) + Dạng 2. Cho x và y tỉ lệ thuận hoặc tỉ lệ nghịch, hoàn thành bảng số liệu + Dạng 3. Nhận biết hai đại lượng có tỉ lệ thuận hay tỉ lệ nghịch + Dạng 4.Cho x tỉ lệ thuận (tỉ lệ nghịch) với y, y tỉ lệ thuận (tỉ lệ nghịch) với z. Hỏi mối quan hệ của x và z và tính hệ số tỉ lệ + Dạng 5. Các bài toán đố [ads] CHUYÊN ĐỀ VI . CĂN BẬC 2 + Dạng 1. Tính giá trị biểu thức và viết căn bậc hai của một số + Dạng 2. So sánh hai căn bậc hai + Dạng 3. Tìm x biết √f(x) = a + Dạng 4. Tìm điều kiện xác định của các biểu thức chứa căn + Dạng 5. Chứng minh một số là số vô tỉ ĐỔI SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN RA PHÂN SỐ TỐI GIẢN SỐ THẬP PHÂN HỮU HẠN – SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN + Dạng 1. Nhận biết một phân số là số thập phân hữu hạn hay vô hạn tuần hoàn + Dạng 2. Viết một phân số hoặc một tỉ số dưới dạng số thập phân + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản CHUYÊN ĐỀ VII . HÀM SỐ VÀ ĐỒ THỊ + Dạng 1. Xác định xem đại lượng y có phải là hàm số của đại lượng x không + Dạng 2.Tính giá trị của hàm số tại giá trị của một biến cho trước + Dạng 3. Tìm tọa độ một điểm và vẽ một điểm đã biết tọa độ, tìm các điểm trên một đồ thị hàm số, biểu diễn các điểm lên hình và tính diện tích + Dạng 4. Tìm hệ số a của đồ thị hàm số y = ax + b khi biết một điểm đi qua + Dạng 5. Kiểm tra một điểm có thuộc đồ thị hàm số hay không + Dạng 6. Cách lấy 1 điểm thuộc đồ thị và vẽ đồ thị hàm số y = ax, y = ax + b, đồ thị hàm trị tuyệt đối + Dạng 7. Tìm giao điểm của 2 đồ thị y = f(x) và y = g(x). Chứng minh và tìm điều kiện để 3 đường thẳng đồng quy + Dạng 8. Chứng minh 3 điểm thẳng hàng + Dạng 9. Cho bảng số liệu, hỏi hàm số xác định bởi công thức nào, hàm số là đồng biến hay nghịch biến + Dạng 10. Tìm điều kiện để hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc CHUYÊN ĐỀ VIII . THỐNG KÊ + Dạng 1. Khai thác thông tin từ bảng thống kê + Dạng 2. Lập bảng tần số và rút ra nhận xét + Dạng 3. Dựng biểu đồ đoạn thẳng hoặc biểu đồ hình chữ nhật + Dạng 4. Vẽ biểu đồ hình quạt + Dạng 5. Tính số trung bình cộng, tìm Mốt của dấu hiệu CHUYÊN ĐỀ IX . BIỂU THỨC ĐẠI SỐ + Dạng 1. Đọc và viết biểu thức đại số theo yêu cầu bài toán + Dạng 2. Tính giá trị biểu thức đại số + Dạng 3. Tìm GTLN, GTNN + Dạng 4. Bài tập đơn thức + Dạng 5. Bài tập đa thức + Dạng 6. Đa thức một biến + Dạng 7. Tìm nghiệm của đa thức 1 biến + Dạng 8. Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a B. PHẦN HÌNH HỌC CHUYÊN ĐỀ I . ĐƯỜNG THẲNG VUÔNG GÓC VÀ ĐƯỜNG THẲNG SONG SONG. GÓC ĐỐI ĐỈNH CHUYÊN ĐỀ II . TAM GIÁC. TỔNG BA GÓC CỦA MỘT TAM GIÁC CHUYÊN ĐỀ III . QUAN HỆ GIỮA CÁC YẾU TỐ CỦA TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY TRONG TAM GIÁC

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tam giác cân, đường trung trực của đoạn thẳng Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Chứng minh tam giác cân, tam giác đều và sử dụng tính chất của tam giác cân, tam giác đều để giải quyết bài toán. Dựa và dấu hiệu nhận biết của tam giác cân, tam giác đều. Dựa vào tính chất của tam giác cân, tam giác đều để tính số đo góc hoặc chứng minh các góc bằng nhau, các cạnh bằng nhau. Dạng 2 . Vận dụng tính chất của đường trung trực để giải quyết bài toán. Sử dụng tính chất: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó. Dạng 3 . Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. + Để chứng minh điểm M thuộc trung trực của đoạn thẳng AB, ta dùng nhận xét: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. + Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm phân biệt cách đều A và B hoặc dùng định nghĩa đường trung trực. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề các trường hợp bằng nhau của tam giác vuông Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Xét hai tam giác vuông. + Kiểm tra các điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc, cạnh huyền – góc nhọn, cạnh huyền – cạnh góc vuông. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Chọn hai tam giác vuông có cạnh (góc) là đoạn thẳng (góc) cần tính hoặc chứng minh bằng nhau. + Tìm thêm hai điều kiện bằng nhau, trong đó có một điều kiện về cạnh, để kết luận hai tam giác bằng nhau. + Suy ra các cạnh (góc) tương ứng bằng nhau và kết luận. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác Toán 7
Tài liệu gồm 36 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác bằng nhau. + Xét hai tam giác. + Kiểm tra ba điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh một tính chất khác. + Chọn hai tam giác có cạnh (góc) là hai đoạn thẳng (góc) cần chứng minh bằng nhau. + Chứng minh hai tam giác ấy bằng nhau theo một trong hai trường hợp cạnh – góc – cạnh, góc – cạnh – góc rồi suy ra hai cạnh (góc) tương ứng bằng nhau. Kiểm tra ba điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc. + Kết hợp với các tính chất đã học về tia phân giác, đường thẳng song song, đường trung trực, tổng ba góc trong một tam giác, … để chứng minh một tính chất khác. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác Toán 7
Tài liệu gồm 22 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài tập lí thuyết: Viết kí hiệu về sự bằng nhau của hai tam giác, từ kí hiệu bằng nhau của hai tam giác suy ra các cạnh – góc bằng nhau. + Từ kí hiệu tam giác bằng nhau suy ra các cạnh và các góc bằng nhau đúng thứ tự tương ứng. + Ngược lại, khi viết kí hiệu tam giác bằng nhau lưu ý kiểm tra lại xem các góc hay cạnh tương ứng đã bằng nhau thỏa mãn yêu cầu đề bài chưa. Dạng 2 . Biết hai tam giác bằng nhau và một số điều kiện, tính số đo góc, độ dài cạnh của tam giác. + Từ kí hiệu tam giác bằng nhau suy ra các cạnh và các góc tương ứng bằng nhau. + Lưu ý các bài toán: tổng – hiệu, tổng – tỉ, hiệu – tỉ. + Sử dụng định lí tổng ba góc trong một tam giác. Dạng 3 . Chứng minh hai tam giác bằng nhau theo trường hợp bằng nhau thứ nhất. Từ đó chứng minh các bài toán liên quan: hai đoạn thẳng bằng nhau, hai góc bằng nhau, hai đường thẳng song song – vuông góc, đường phân giác, ba điểm thẳng hàng. + Chỉ ra các tam giác có ba cạnh bằng nhau để suy ra tam giác bằng nhau. + Từ tam giác bằng nhau suy ra các cặp cạnh tương ứng bằng nhau, cặp góc tương ứng bằng nhau. + Nắm vững các khái niệm: tia phân giác của góc, đường cao của tam giác, đường trung trực của đoạn thẳng, hai đường thẳng song song, hai đường thẳng vuông góc; nắm vững định lí tổng ba góc trong một tam giác, tiên đề Ơ clit để giải các bài toán chứng minh. PHẦN III . BÀI TẬP TỰ LUYỆN.