Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên Tin) năm 2021 2022 trường chuyên Hoàng Văn Thụ Hòa Bình

Nội dung Đề thi vào 10 môn Toán (chuyên Tin) năm 2021 2022 trường chuyên Hoàng Văn Thụ Hòa Bình Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên Tin) năm 2021-2022 trường chuyên Hoàng Văn Thụ Hòa Bình Đề thi vào 10 môn Toán (chuyên Tin) năm 2021-2022 trường chuyên Hoàng Văn Thụ Hòa Bình Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2021 – 2022 trường THPT chuyên Hoàng Văn Thụ – Hòa Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm (bản chính thức do sở Giáo dục và Đào tạo tỉnh Hòa Bình công bố), kỳ thi diễn ra vào ngày 07 tháng 06 năm 2021. Một số câu hỏi trong đề thi bao gồm: 1. Trong mặt phẳng tọa độ Oxy, có parabol (P) có phương trình y = 2x^2 và đường thẳng (d): y = 4x – m + 1 (với m là tham số). Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x thỏa mãn hệ thức: 2x^2 + 4x - 1 = 0. 2. Hai cây nến có cùng chiều dài và khác nhau về chất liệu. Cây nến thứ nhất cháy hết trong 4 giờ, cây nến thứ hai cháy hết trong 6 giờ. Nếu đốt cùng một lúc, sau bao lâu phần còn lại của cây nến thứ hai gấp đôi phần còn lại của cây nến thứ nhất. 3. Cho đường tròn tâm O, bán kính R. Từ một điểm A ở ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B và C là các tiếp điểm). Qua B kẻ đường thẳng song song với AO cắt đường tròn tại M, đường thẳng AM cắt đường tròn tại N, đường thẳng BN cắt AO tại I, AO cắt BC tại K. Những câu hỏi trên đều được biên soạn kỹ càng để đánh giá năng lực toán học của các bạn học sinh. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Cao Bằng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Cao Bằng; kỳ thi được diễn ra vào sáng thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Cao Bằng : + Một mảnh vườn hình chữ nhật có chu vi là 180 m. Nếu tăng chiều rộng mảnh vườn lên thêm 20 m và giảm chiều dài đi 20 m thì diện tích mảnh vườn không thay đổi. Tính chiều dài và chiều rộng mảnh vườn. + Cho tam giác ABC vuông tại A. Biết AC = 8cm; BC = 10cm. a) Tính độ dài cạnh AB. b) Kẻ đường cao AH. Tính độ dài đoạn thẳng HC. + Cho đường tròn (O) đường kính AB, trên đoạn thẳng OB lấy điểm C sao cho C không trùng với O và B. Gọi H là trung điểm của AC, kẻ dây cung DE của đường tròn (O) vuông góc với AC tại H. Gọi K là giao điểm của BD với đường tròn đường kính BC. a) Chứng minh tứ giác DHCK là tứ giác nội tiếp. b) Chứng minh ba điểm E, C, K thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Bình Phước; kỳ thi được diễn ra vào 05/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Bình Phước : + Một mảnh vườn hình chữ nhật có diện tích 600m2. Biết rằng nếu tăng chiều dài 10m và giảm chiều rộng 5m thì diện tích không đổi. Tính chiều dài và chiều rộng. + Cho tam giác ABC vuông tại A, đường cao AH. Biết rằng AB = 3cm, C = 30. a) Tính B, AC, AH. b) Trên cạnh BC lấy điểm M sao cho MC = 2MB, tính diện tích tam giác AMC. + Cho đường tròn (O) đường kính AB, lấy điểm C thuộc (O) (C khác A và B), tiếp tuyến của đường tròn (O) tại B cắt AC ở K. Từ K kẻ tiếp tuyến KD với đường tròn (O) (D là tiếp điểm khác B). a) Chứng minh tứ giác BODK nội tiếp. b) Biết OK cắt BD tại I. Chứng minh rằng OI vuông góc BD và KC.KA = KI.KO. c) Gọi E là trung điểm của AC, kẻ đường kính CF của đường tròn (O), FE cắt AI tại H. Chứng minh rằng H là trung điểm của AI.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hải Phòng; kỳ thi được diễn ra vào 05/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hải Phòng : + Cho phương trình: x2 – 2(a + 1)x + a2 – 2a + 1 = 0 (x là ẩn, a là tham số). Chứng minh nếu a là số chính phương thì phương trình đã cho có hai nghiệm cũng là những số chính phương. + Cho tam giác nhọn ABC không cân nội tiếp đường tròn tâm O. Vẽ đường kính AT của đường tròn (O) và lấy điểm P trên đoạn thẳng OT (P khác T). Gọi E và F tương ứng là hình chiếu vuông góc của P trên các đường thẳng AC và AB. Gọi H là hình chiếu vuông góc của A trên cạnh BC. a) Chứng minh OAB = HAC và hai đường thẳng BC, EF song song với nhau. b) Cho AH và EF cắt nhau tại U; điểm Q di động trên đoạn thẳng UE (Q khác U, Q khác E). Đường thẳng vuông góc với AQ tại điểm Q cắt các đường thẳng PE, PF tương ứng tại M, N. Gọi K là tâm đường tròn ngoại tiếp tam giác AMN. Chứng minh bốn điểm A, M, N, P cùng thuộc một đường tròn và OAH = KAQ. c) Kẻ KD vuông góc với BC (D thuộc BC). Chứng minh đường thẳng đi qua điểm D và song song với AQ luôn đi qua một điểm cố định. + Cho 8 điểm phân biệt trên một đường tròn. Đánh số các điểm đó một cách ngẫu nhiên bởi các số 1; 2; …; 8 (hai điểm khác nhau được đánh số bởi hai số khác nhau). Mỗi dây cung nối hai điểm bất kỳ được gán với giá trị tuyệt đối của hiệu các số ở hai đầu mút. Chứng minh rằng luôn tìm được bốn dây cung, đôi một không có điểm chung, sao cho tổng của các số gán với bốn dây cung đó bằng 16.
Đề tuyển sinh lớp 10 môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán A1: Nguyễn Nhất Huy – Trần Nguyễn Đức Nhật – Phan Anh Quân – Trịnh Huy Vũ). Trích dẫn Đề tuyển sinh lớp 10 môn Toán (vòng 2) năm 2023 trường THPT chuyên KHTN – Hà Nội : + Cho tam giác ABC nhọn vói AB < AC nội tiếp trong đường tròn (O) có tiếp tuyến tại A của (O) cắt BC ở T sao cho TB > BC. Gọi P và E lần lượt là trung điểm của TA và TC. 1) Chứng minh rằng tứ giác APEB nội tiếp. 2) Gọi giao điểm thứ hai của AE với (O) là F. Lấy G thuộc (O) sao cho FG song song với AC. Chứng minh rằng AT G d TAF d. 3) Gọi H là trực tâm của tam giác ABC,D là giao điểm của AH và BC. M là trung điểm BC. K đối xứng với A qua BC. N thuộc đường thẳng AM sao cho KN song song với HM. Lấy S thuộc BC sao cho NS ⊥ NK. Dựng R thuộc tia AK sao cho AR·AH = AD2. Q là điểm sao cho PQ ⊥ AS và SQ ⊥ AO. Chứng minh rằng điểm đối xứng của A qua QR thuộc đường tròn đường kính DN. + Viết 100 số nguyên dương đầu tiên 1; 2; …; 100 vào một bảng ô vuông kích thước 10×10 một cách tuỳ ý sao cho mỗi ô vuông được viết đúng một số. Chứng minh rằng tồn tại hai ô kề nhau (hai ô có cạnh chung) mà hai số được viết ở hai ô này có hiệu lớn hơn hoặc bằng 10? + Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn: 4x + (1 + 3y)(1 + 7y) = 2x(3y + 7y + 2).