Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội

Nội dung Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội Trong kỳ thi thử vào 10 môn Toán năm 2019 của trường THCS Tân Mai, học sinh sẽ đối diện với 5 bài toán khó khăn. Đề thi được thiết kế để đánh giá kiến thức và kỹ năng của học sinh và giúp họ chuẩn bị tốt cho kì thi chính thức vào lớp 10 THPT. Một trong những bài toán trong đề thi đòi hỏi học sinh phải biết cách lập phương trình hoặc hệ phương trình để giải quyết vấn đề thực tế. Ví dụ, bài toán về việc tính thời gian mà một chiếc xe ô tô cần phải chạy, khi phải thay đổi vận tốc do điều kiện thời tiết. Đây là một bài toán không chỉ yêu cầu kiến thức cơ bản mà còn đề cao kỹ năng làm việc đồng thời với thời gian và vận tốc. Ngoài ra, đề thi còn đề cập đến các bài toán về hình học, yêu cầu học sinh phải có khả năng phân tích và suy luận. Ví dụ, bài toán về tam giác ABC vuông tại A sẽ đòi hỏi học sinh tính toán diện tích và thể tích của hình tạo ra sau khi quay tam giác. Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai Hà Nội không chỉ là bài kiểm tra kiến thức mà còn là cơ hội để học sinh thể hiện khả năng phân tích, suy luận và giải quyết vấn đề. Điều này sẽ giúp họ chuẩn bị tốt cho cuộc thi chính thức và phát triển kỹ năng toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 - 2022 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán (không chuyên) năm học 2021 – 2022 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 – 2022 trường PTNK – TP HCM : + Gọi (P), (d) lần lượt là đồ thị của hàm số y = x2 và y = 2x + m. a) Tìm m sao cho (P) cắt (d) tại hai điểm phân biệt A(x1;y1); B(x2;y2). b) Tìm m sao cho (x1 – x2)2 + (y1 – y2)2 = 5. + Công ty viễn thông X có hai gói cước gọi điện hàng tháng được tính như sau: Gói I: 1.800 đồng/phút cho 60 phút đầu tiên, 1.500 đồng/phút cho 60 phút tiếp theo và 1.000 đồng/phút cho thời gian còn lại. Gói II: 2.000 đồng/phút cho 30 phút đầu tiên, 1.800 đồng/phút cho 30 phút tiếp theo, 1.200 đồng/phút cho 30 phút tiếp theo nữa và 800 đồng/phút cho thời gian còn lại. Sau khi cân nhắc thời gian gọi trung bình mỗi tháng, bác An chọn gói cước II vì so với gói cước I bác An sẽ tiết kiệm được 95.000 đồng. Hỏi một tháng trung bình bác An gọi bao nhiêu phút? + Tam giác ABC có AB = 3cm, AC = 4cm và BC = 5cm. Vẽ phân giác BD của góc ABC (D thuộc cạnh AC). Tính độ dài BD.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội : + Một tấm biển quảng cáo có dạng hình tròn tâm O, bán kính bằng 1,6m. Giả sử hình chữ nhật ABCD nội tiếp đường tròn tâm O bán kính bằng 1,6m sao cho BOC 45 (hình bên). Người ta cần sơn màu toàn bộ tấm biển quảng cáo và chỉ sơn một mặt như ở hình bên. Biết mức chi phí sơn phần hình tô đậm là 150 nghìn đồng/ 2m và phần còn lại là 200 nghìn đồng/ 2m. Hỏi số tiền (làm tròn đến đơn vị nghìn đồng) để sơn toàn bộ biển quảng cáo bằng bao nhiêu? Cho pi = 3,14. + Cho ba điểm A, B, C cố định sao cho A, B, C thẳng hàng, B nằm giữa A và C. Gọi d là đường thẳng đi qua C và vuông góc với AB. Lấy điểm M tùy ý trên d. Đường thẳng đi qua B và vuông góc với AM cắt các đường thẳng AM, d lần lượt tại I, N. Đường thẳng MB cắt AN tại K. a) Chứng minh rằng tứ giác MIKN nội tiếp. b) Chứng minh rằng CM CN AC BC. c) Gọi O là tâm của đường tròn ngoại tiếp tam giác AMN. Vẽ hình bình hành MBNE. Gọi H là trung điểm của đoạn thẳng BE. Chứng minh rằng OH vuông góc với đường thẳng d và 1 2 OH AB. + Cho a và b là hai số hữu tỉ. Chứng minh rằng nếu a b 2 3 cũng là số hữu tỉ thì a b 0.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bắc Kạn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bắc Kạn; kỳ thi được diễn ra vào ngày 17 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đà Nẵng : + Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 2021 và hiệu của số lớn và số bé bằng 15. + Một địa phương lên kế hoạch xét nghiệm SARS-CoV-2 cho 12000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 1 000 người. Vì thế, địa phương này hoàn thành sớm hơn kế hoạch là 16 giờ. Hỏi theo kế hoạch, địa phương này phải xét nghiệm trong thời gian bao nhiêu giờ? + Cho tam giác nhọn ABC có AB < AC, các đường cao BD, CE (D thuộc AC, E thuộc AB) cắt nhau tại H. a) Chứng minh rằng tứ giác BEDC nội tiếp. b) Gọi M là trung điểm của BC. Đường tròn đường kính AH cắt AM tại điểm G (G khác A). Chứng minh rằng AE.AB = AC.AM. c) Hai đường thẳng DE và BC cắt nhau tại K. Chứng minh rằng MAC = GCM và đường thẳng nối tâm hai đường tròn ngoại tiếp hai tam giác MBB, MCD song song với đường thẳng KG.