Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

395 bài tập trắc nghiệm thể tích khối đa diện cơ bản - Nguyễn Bảo Vương

Tài liệu 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản – Nguyễn Bảo Vương gồm 85 trang với phần tóm tắt lý thuyết, công thức tính và 395 bài tập trắc nghiệm thể tích khối đa diện cơ bản, dành cho học sinh trung bình, có đáp án ở cuối tài liệu. Nội dung tài liệu : + ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9-10 + ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG I. Định nghĩa: Đường thẳng và mặt phẳng gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu đường thẳng d không nằm trên mp(P) và song song với đường thẳng a nằm trên mp(P) thì đường thẳng d song song với mp(P). Định lý 2 : Nếu đường thẳng a song song với mp(P) thì mọi mp(Q) chứa a mà cắt mp(P) thì cắt theo giao tuyến song song với a. Định lý 3 : Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó. §2.HAI MẶT PHẲNG SONG SONG I. Định nghĩa: Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm nào chung. II. Các định lý Định lý 1 : Nếu mp(P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P) và (Q) song song với nhau. Định lý 2 : Nếu một đường thẳng nằm một trong hai mặt phẳng song song thì song song với mặt phẳng kia. Định lý 3 : Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì phải cắt (Q) và các giao tuyến của chúng song song. [ads] B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG I. Định nghĩa: Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trên mặt phẳng đó. II. Các định lý Định lý 1 : Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mp(P) thì đường thẳng d vuông góc với mp(P). Định lý 2 : (Ba đường vuông góc) Cho đường thẳng a không vuông góc với mp(P) và đường thẳng b nằm trong (P). Khi đó, điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P). §2.HAI MẶT PHẲNG VUÔNG GÓC I. Định nghĩa: Hai mặt phẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 90 độ. II. Các định lý Định lý 1: Nếu một mặt phẳng chứa một đường thẳng vuông góc với một mặt phẳng khác thì hai mặt phẳng đó vuông góc với nhau. Định lý 2: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vuông góc với giao tuyến của (P) và (Q) đều vuông góc với mặt phẳng (Q). Định lý 3: Nếu hai mặt phẳng (P) và (Q) vuông góc với nhau và A là một điểm trong (P) thì đường thẳng a đi qua điểm A và vuông góc với (Q) sẽ nằm trong (P). Định lý 4: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba. §3.KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng: Khoảng cách từ điểm M đến đường thẳng a (hoặc đến mặt phẳng (P)) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên đường thẳng a ( hoặc trên mp(P)). 2. Khoảng cách giữa đường thẳng và mặt phẳng song song: Khoảng cách giữa đường thẳng a và mp(P) song song với a là khoảng cách từ một điểm nào đó của a đến mp(P). 3. Khoảng cách giữa hai mặt phẳng song song: là khoảng cách từ một điểm bất kỳ trên mặt phẳng này đến mặt phẳng kia. 4.Khoảng cách giữa hai đường thẳng chéo nhau: là độ dài đoạn vuông góc chung của hai đường thẳng đó. §4.GÓC 1. Góc giữa hai đường thẳng a và b là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt cùng phương với a và b. 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên mp(P). 3. Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó. 4. Diện tích hình chiếu: Gọi S là diện tích của đa giác (H) trong mp(P) và S’ là diện tích hình chiếu (H’) của (H) trên mp(P’) thì S’ = Scosα, trong đó α là góc giữa hai mặt phẳng (P) và (P’). ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. THỂ TÍCH KHỐI ĐA DIỆN LOẠI 1: THỂ TÍCH LĂNG TRỤ Dạng 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy Dạng 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng 3. Lăng trụ đứng có góc giữa 2 mặt phẳng Dạng 4. Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Dạng 1. Khối chóp có cạnh bên vuông góc với đáy Dạng 2. Khối chóp có một mặt bên vuông góc với đáy Dạng 3. Khối chóp đều Dạng 4. Khối chóp & phương pháp tỷ số thể tích

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số - Nguyễn Đại Dương
Tài liệu gồm 90 trang với tóm tắt lý thuyết, ví dụ mẫu và bài tập trắc nghiệm ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. Các bài toán được chia thành các dạng: Tính đơn điệu của hàm số Dạng 1: Tìm tham số m để hàm số đơn điệu trên TXD Dạng 2: Tìm tham số m để hàm số đơn điệu trên một khoảng, đoạn, nữa khoảng cho trước Cực trị của hàm số Dạng 1: Tìm m để hàm số y = f(x) đạt cực trị tại điểm xo Dạng 2: Cho hàm số y = f(x;m) = ax^3 + bx^2 + cx + d, tìm tham số m để đồ thị hàm số có điểm cực trị x1, x2 thỏa mãn điều kiện K cho trước Dạng 3: Bài toán liên quan phương trình đường thẳng qua hai điểm cực trị của hàm số bậc 3: y = ax^3 + bx^2 + cx + d Dạng 4: Tìm m để hàm số trùng phương y = ax^4 + bx^2 + c có cực trị thỏa mãn yêu cầu [ads] Khảo sát hàm số Tương giao giữa hai đồ thị Dạng 1: Tương giao giữa đồ thị hàm số y = f(x) và đường thẳng y = g(m). Bài toán biện luận số nghiệm của phương trình f(x) = g(m) Dạng 2: Tương giao giữa hàm số bậc 3 y = ax^3 + bx^2 + cx + d và đường thẳng y = a’x + b’ Dạng 3: Tương giao giữa hàm số bậc 4 trùng phương y = ax^4 + bx^2 + c và đường thẳng y = k Dạng 4: Tương giao giữa hàm số phân thức y = (ax + b)/(cx + d) và đường thẳng y = a’x + b’ Dạng 5: Tương giao giữa hai đồ thị hàm số bất kì y = f(x, m), y = g(x, m) Tiếp xúc – tiếp tuyến
Bài tập trắc nghiệm chuyên đề hàm số - Đặng Việt Đông
Tài liệu gồm 46 trang với các câu hỏi trắc nghiệm chuyên đề hàm số có đáp án, các bài toán được phân loại thành các phần: SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ (50 câu) Bài toán 1: Tìm khoảng đồng biến – nghịch biến của hàm số: Bài toán 2: Tìm m để hàm số y = f(x, m) đơn điệu trên khoảng (a, b) CỰC TRỊ CỦA HÀM SỐ (80 câu) Bài toán 1: tìm điểm cực đại – cực tiểu của hàm số Bài toán 2: Cực trị của hàm bậc 3 Bài toán 3: Cực trị của hàm số bậc 4 trùng phương [ads] GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ (72 câu) TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ (58 câu) BẢNG BIẾN THIÊN VÀ ĐỒ THỊ HÀM SỐ (39 câu) SỰ TƯƠNG GIAO CỦA ĐỒ THỊ HÀM SỐ (59 câu) Bài toán 1: Tọa độ giao điểm của hai đồ thị hàm số Bài toán 2: Tương giao của đồ thị hàm bậc 3 Bài toán 3: Tương giao của hàm số phân thức Bài toán 4: Tương giao của hàm số bậc 4 TIẾP TUYẾN CỦA ĐỒ THỊ HÀM SỐ (48 câu) Bài toán 1: Tiếp tuyến tại điểm M (x0;y0) thuộc đồ thị hàm số: Bài toán 2: Tiếp tuyến có hệ số góc k cho trước Bài toán 3: Tiếp tuyến đi qua điểm
Các dạng bài tập trắc nghiệm về hàm số và các bài toán liên quan - Trần Duy Thúc
Tài liệu phân dạng bài tập trắc nghiệm về hàm số và các bài toán liên quan do thầy Trần Duy Thúc biên soạn, các bài toán đều có đáp án. Lời giới thiệu của tác giả : Chào các Em học sinh thân mến! Chắc hẳn các Em cũng đã nắm được thông tin rằng năm 2017 môn Toán sẽ thi theo hình thức trắc nghiệm. Thông tin trên chắc Thầy sẽ không đề cặp nhiều ở đây nữa. Điều cần nhất bây giờ đó là các Em phải tập trung học thật kĩ. Nếu như trước kia, thi tự luận thì các Em chỉ cần hiểu lý thuyết, nắm được các dạng bài tập và giải được các bài tập là đã tốt. Tuy nhiên, với hình thức thi trắc nghiệm thì bấy nhiêu là chưa đủ. Chẳng những các Em phải nắm thật chắc lý thuyết, nắm được các dạng bài tâp, biết giải bài tập mà còn phải giải thật nhanh. Nếu như thi tự luận mỗi dạng em làm khoảng 10 bài đã hiểu được thì bây giờ Em phải làm 100 bài , thậm chí 200 bài và hơn nữa. Vì không phải chỉ biết giải, chỉ hiểu mà phải giải nhanh nhất, lựa chọn phương pháp tiết kiệm thời gian nhất. Nhằm đáp ứng câu trúc đề thi mới của Bộ và nhằm cung cấp lượng bài tập đáng kể cho các Em luyện tập Thầy biên soạn quyển tài liệu Các dạng bài tập trắc nghiệm về Hàm Số. Theo cấu trúc dự kiến của Bộ thì nội dung này chiếm 12 câu. Thầy tin rằng với tài liệu này có thể giúp các Em nắm được từ đơn giản nhất đến các bài toán phức tạp và sẽ hầu như không có dạng bài tập nào về Khảo Sát Hàm số nằm ngoài quyển tài liệu này. Tuy nhiên, việc các Em đọc thêm nhiều tài liệu đó là một điều Thầy rất vui, rất khuyến khích. Để các Em thuận lợi trong việc ghi nhớ các dạng bài tập và luyện tập đến mức nhuần nhiễn, trong vòng 30 giây xong bài Toán. [ads] Thầy sẽ chia tài liệu ra thành 7 phần: + Phần 1. Các bài toán liên quan đến tính tăng đến tính tăng giảm của hàm số. + Phần 2. Các bài toán liên quan đến cực trị của hàm số. + Phần 3. Các bài toán về giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Phần 4. Các bài toán về tiếp tuyến với đồ thị của hàm số. + Phần 5. Các bài toán sự tương giao. + Phần 6. Một số bài toán khác. + Phần 7. Bài tập tổng hợp. + Phần 8. Hướng dẫn và đáp số.
Tuyển chọn bài tập hàm số - Phạm Duy
Tài liệu gồm 15 trang tuyển chọn các bài toán thuộc chuyên đề hàm số trong các đề thi của Bộ GD và đề thi thử Đại học của các trường trên toàn quốc. Tài liệu do tác giả Phạm Duy sưu tầm và biên soạn.