Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập mặt nón, mặt trụ, mặt cầu - Diệp Tuân

Tài liệu gồm 259 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập mặt nón, mặt trụ, mặt cầu trong chương trình Toán 12 phần Hình học chương 2. MỤC LỤC : CHƯƠNG II. MẶT NÓN, MẶT TRỤ VÀ MẶT CẦU 1. 1. MẶT TRÒN XOAY – MẶT NÓN. A. Lý thuyết 1. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 4. Dạng 1. Xác định các yếu tố cơ bản (r;l;h) của hình nón. Tính Sxq; Stp; V 4. Dạng 2. Thiết diện của mặt nón 24. + Trường hợp 1. Thiết diện qua trục của hình nón 24. + Trường hợp 2. Thiết diện qua đỉnh của hình nón 32. + Trường hợp 3. Thiết diện vuông góc với trục hình nón và song song mặt đáy 53. + Trường hợp 4. Thiết diện cắt mọi đường sinh của hình nón 58. + Trường hợp 5. Thiết diện song song với đường sinh của hình nón 58. Dạng 3. Sự tạo thành hình nón 59. + Trường hợp 1. Hình nón tạo thành khi quay vuông quanh cạnh góc vuông 59. + Trường hợp 2. Hình nón tạo thành khi quay bất kỳ 62. + Trường hợp 3. Hình nón tạo thành khi quay tam giác quanh đường cao 64. + Trường hợp 4. Hình nón tạo thành khi quay hình thang quanh đường cao 65. Dạng 4. Mặt nón ngoại tiếp và nội tiếp 68. 2. MẶT TRỤ. A. Lý thuyết 81. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 83. Dạng 1. Xác định các yếu tố cơ bản (r;l;h) của hình trụ. Tính Sxq; Stp; V 83. Dạng 2. Sự tạo thành hình trụ 94. Dạng 3. Thiết diện của mặt trụ 108. + Trường hợp 1. Thiết diện qua trục của hình trụ 108. + Trường hợp 2. Thiết diện không qua trục và song song với trục của hình trụ 116. + Trường hợp 3. Thiết diện cắt trục của hình trụ và tạo với hình trụ một góc 122. Dạng 4. Mặt trụ nội tiếp và ngoại tiếp 138. + Trường hợp 1. Mặt trụ ngoại tiếp hình hộp chữ nhật 138. + Trường hợp 2. Mặt trụ nội tiếp hình lăng trụ đứng 139. + Trường hợp 3. Mặt trụ ngoại tiếp hình lăng trụ đứng có đáy là tam giác đều 141. 3. MẶT CẦU. A. Lý thuyết 160. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 165. Dạng 1. Chứng minh các điểm nằm trên mặt cầu. Tính S; V 165. Dạng 2. Xác định mặt cầu ngoại tiếp khối đa diện 182. + Trường hợp 1. Mặt cầu ngoại tiếp hình lăng trụ đứng 182. + Trường hợp 2. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy 190. + Trường hợp 3. Mặt cầu ngoại tiếp hình chóp có các cạnh bên cách đều các đỉnh 209. + Trường hợp 4. Mặt cầu ngoại tiếp hình chóp mặt bên vuông góc với mặt đáy 219. + Trường hợp 5. Mặt cầu ngoại tiếp hình chóp bất kỳ 225. + Trường hợp 6. Mặt cầu ngoại tiếp hình nón 230. + Trường hợp 7. Mặt cầu ngoại tiếp hình trụ 236. Dạng 3. Xác định mặt cầu nội tiếp hình lăng trụ, hình trụ và hình nón 239.

Nguồn: toanmath.com

Đọc Sách

Câu hỏi và bài tập trắc nghiệm chuyên đề số phức - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 62 trang phân dạng và tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án và lời giải chi tiết, tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. TỔNG HỢP KIẾN THỨC 1. Khái niệm số phức 2. Hai số phức bằng nhau 3. Biểu diễn hình học số phức 4. Phép cộng và phép trừ số phức 5. Phép nhân số phức 6. Số phức liên hợp 7. Môđun của số phức 8. Chia hai số phức 9. Lũy thừa đơn vị ảo i 10. Phương trình bậc hai với hệ số thực [ads] CÂU HỎI TRẮC NGHIỆM + Vấn đề 1. Phần thực – phần ảo + Vấn đề 2. Hai số phức bằng nhau + Vấn đề 3. Biểu diễn hình học số phức + Vấn đề 4. Phép cộng – phép trừ hai số phức + Vấn đề 5. Nhân hai số phức + Vấn đề 6. Số phức liên hợp + Vấn đề 7. Mô đun của số phức + Vấn đề 8. Phép chia số phức + Vấn đề 9. Lũy thừa đơn vị ảo + Vấn đề 10. Phương với hệ số thực + Vấn đề 11. Tập hợp các điểm biểu diễn số phức + Vấn đề 12. Bài toán min – max trong số phức + Vấn đề 13. Tổng hợp LỜI GIẢI CHI TIẾT
Các dạng toán và bài tập số phức có lời giải chi tiết - Nguyễn Bảo Vương
Tài liệu gồm 128 trang tóm tắt lý thuyết, phân dạng toán và tuyển tập các bài toán trắc nghiệm, tự luận về chuyên đề số phức trong chương trình Giải tích 12 chương 3, các bài toán đều có đáp án và lời giải chi tiết. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. Các dạng toán về số phức: + Dạng 1. Các phép tính về số phức và các bài toán định tính + Dạng 2. Biểu diễn hình học của số phức và ứng dụng + Dạng 3. Căn bậc hai của số phức và phương trình bậc hai + Dạng 4. Phương trình quy về bậc hai + Dạng 5. Dạng lượng giác của số phức + Dạng 6. Cực trị của số phức [ads] Các dạng bài tập: + Vấn đề 1. Phần thực – phần ảo + Vấn đề 2. Hai số phức bằng nhau + Vấn đề 3. Biểu diễn hình học số phức + Vấn đề 4. Phép cộng – phép trừ hai số phức + Vấn đề 5. Nhân hai số phức + Vấn đề 6. Số phức liên hợp + Vấn đề 7. Mô đun của số phức + Vấn đề 8. Phép chia số phức + Vấn đề 9. Lũy thừa đơn vị ảo + Vấn đề 10. Phương với hệ số thực + Vấn đề 11. Tập hợp các điểm biểu diễn số phức + Vấn đề 12. Bài toán min – max trong số phức
Bài tập trắc nghiệm tổng ôn số phức - Đoàn Trí Dũng
Tài liệu gồm 14 trang tuyển tập 150 bài tập trắc nghiệm tổng ôn số phức có đáp án chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Gọi z1, z2 là hai nghiệm của phương trình 2z^2 − 3z + 7 = 0. Tính giá trị của biểu thức z1 + z2 − z1.z2? + Gọi M là điểm biểu diễn của số phức z = 3 − 4i và M’ là điểm biểu diễn của số phức z’ = (1 + i)/2.z trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM’. + Giả sử A, B, C lần lượt là các điểm biểu diễn trên mặt phẳng phức của các số phức z1 = 1 + i, z2 = (1 + i)^2, z3 = a − i trong đó a ∈ Z. Để tam giác ABC vuông tại B thì giá trị của a là? + Cho các số phức a, b, c đôi một phân biệt và lần lượt có các điểm biểu diễn là A, B, C trong mặt phẳng tọa độ Oxy. Nếu (a − c)/(b − c) là một số thực thì mệnh đề nào sau đây đúng? [ads] A. A, B, C là ba đỉnh một tam giác B. A, B, C là ba điểm thẳng hàng C. A, B, C cùng nằm trên một đường tròn D. A, B, C là ba trong bốn đỉnh một hình vuông + Điểm M trong hình vẽ là điểm biểu diễn số phức z. Khi đó phần thực và phần ảo của số phức z là: A. Phần thực bằng 4 và phần ảo bằng -2 B. Phần thực bằng -2 và phần ảo bằng 4 C. Phần thực bằng -4 và phần ảo bằng 2 D. Phần thực bằng 2 và phần ảo bằng 4
Bài tập trắc nghiệm chuyên đề số phức - Lương Văn Huy
Tài liệu gồm 25 trang tóm tắt lý thuyết, công thức tính toán số phức và 142 bài tập trắc nghiệm chuyên đề số phức chọn lọc. Nội dung tài liệu: A. ĐỊNH NGHĨA VÀ CÁC PHÉP TOÁN SỐ PHỨC 1. Khái niệm số phức Là biểu thức có dạng a + bi, trong đó a, b là những số thực và số i thoả i^2 = –1 Kí hiệu là z = a + bi với a là phần thực, b là phần ảo, i là đơn vị ảo Tập hợp các số phức kí hiệu là C = {a + bi / a, b ∈ R và i^2 = –1}. Ta có R ⊂ C Số phức có phần ảo bằng 0 là một số thực: z = a + 0.i = a ∈ R ⊂ C Số phức có phần thực bằng 0 là một số ảo: z = 0.a + bi = bi. Đặc biệt i = 0 + 1.i Số 0 = 0 + 0.i vừa là số thực vừa là số ảo 2. Số phức bằng nhau Cho hai số phức z = a + bi và z’ = a’ + b’i . Ta có z = z ⇔ a = a’ và b = b’ 3. Biểu diễn hình học của số phức Mỗi số phức z = a + bi được xác định bởi cặp số thực (a; b) Trên mặt phẳng Oxy, mỗi điểm M(a; b) được biểu diễn bởi một số phức và ngược lại Mặt phẳng Oxy biểu diễn số phức được gọi là mặt phẳng phức. Gốc tọa độ O biểu diễn số 0, trục hoành Ox biểu diễn số thực, trục tung Oy biểu diễn số ảo [ads] 4. Môđun của số phức Số phức z = a + bi được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Độ dài của véctơ OM được gọi là môđun của số phức z 5. Số phức liên hợp Cho số phức z = a + bi, số phức liên hợp của z là a – bi 6. Cộng, trừ số phức Số đối của số phức z = a + bi là –z = –a – bi Cho z = a + bi và z’ = a’ + b’i. Ta có z ± z’ = (a ± a’) + (b ± b’)i Phép cộng số phức có các tính chất như phép cộng số thực 7. Phép nhân số phức Cho hai số phức z = a + bi và z’ = a’ + b’i. Nhân hai số phức như nhân hai đa thức rồi thay i^2 = –1 và rút gọn, ta được: z.z’ = a.a’ – b.b’ + (a.b’ + a’.b)i Phép nhân số phức có các tính chất như phép nhân số thực 8. Phép chia số phức 9. Lũy thừa của đơn vị ảo B. CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI 1. Căn bậc hai của số phức Cho số phức w, mỗi số phức z = a + bi thoả z^2 = w được gọi là căn bậc hai của w Mỗi số phức đều có hai căn bậc hai đối nhau (Tổng quát: Căn bậc n của số phức luôn có n giá trị) 2. Phương trình bậc hai Phương trình bậc hai với hệ số a, b, c là số thực Phương trình bậc hai với hệ số phức C. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 1. Số phức dưới dạng lượng giác a. Acgumen của số phức z ≠ 0 Cho số phức z = a + bi ≠ 0 được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Số đo φ = (Ox, OM) (rađian) được gọi là một acgumen của z Mọi acgumen của z sai khác nhau là k2p tức là có dạng φ + k2p (k ∈ Z) (z và nz sai khác nhau k2p với n là một số thực khác 0) b. Dạng lượng giác của số phức z = a + bi Dạng lượng giác của số phức z ≠ 0 là z = r(cosφ + isinφ) với φ là một acgumen của z c. Nhân, chia số phức dưới dạng lượng giác 2. Công thức Moa–vrơ (Moivre) và ứng dụng D. BÀI TẬP TRẮC NGHIỆM SỐ PHỨC