Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Diệp Tuân

Tài liệu gồm 420 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit (Toán 12 phần Giải tích chương 2). CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. 1. LŨY THỪA. A. Lý thuyết 1. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 4. Dạng 1. Biến đổi biểu thức liên quan và so sánh 2. Dạng 2. Rút gọn biểu thức 10. C. Câu hỏi trắc nghiệm 17. Dạng 1. Lũy thừa với số mũ hữu tỉ 18. Dạng 2. Lũy thừa với số mũ vô tỉ 26. 2. HÀM SỐ LŨY THỪA. A. Lý thuyết 31. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 32. Dạng 1. Tập xác định của hàm số lũy thừa 32. Dạng 2. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 35. + Loại 1. Tính đạo hàm của hàm số lũy thừa 35. + Loại 2. Tính giá trị lớn nhất và giá trị lớn nhất của hàm số lũy thừa 36. Dạng 3. Tính chất đồ thị của hàm số lũy thừa 41. C. Câu hỏi trắc nghiệm trong các đề thi đại học 46. 3. LÔGARIT. A. Lý thuyết 57. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 58. Dạng 1. Tập xác định của hàm số lôgarit 58. Dạng 2. Rút gọn biểu thức 66. Dạng 3. Tính giá trị của biểu thức, chứng minh đẳng thức 71. Dạng 4. Khái niệm, tính chất và so sánh 81. Dạng 5. Biểu diễn một lôgarit theo một lôgarit khác cơ số cho trước 90. 4. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. A. Lý thuyết 102. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 103. Dạng 1. Tập xác định của hàm số lôgarit 103. Dạng 2. Tính giá trị của biểu thức khi biết một điều kiện 115. Dạng 3. Tính đạo hàm, tìm giá trị lớn nhất và giá trị nhỏ nhất 118. Dạng 4. Sự đồng biến và nghịch biến của hàm số mũ và hàm số lôgarit 157. Dạng 5. Tìm cực trị của hàm số mũ và hàm số lôgarit 168. Dạng 6. Tính chất và đồ thị của hàm số mũ và hàm số lôgarit 170. Dạng 7. Bài toán thực tế, lãi suất 184. + Loại 1. Bài toán lãi kép 184. + Loại 2. Bài toán gửi tiết kiệm hàng tháng 192. + Loại 3. Bài toán trả góp hàng tháng 195. + Loại 4. Bài toán tăng trưởng 198. 5. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. I. PHƯƠNG TRÌNH MŨ. A. Lý thuyết 203. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 203. Dạng 1. Phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 203. Dạng 2. Phương pháp đặt ẩn phụ 211. Dạng 3. Phương pháp Lôgarit hóa 222. Dạng 4. Phương pháp tích 229. Dạng 5. Phương pháp đặt ẩn phụ không hoàn toàn, phương pháp đồ thị 232. Dạng 6. Phương pháp sử dụng tính đơn điệu của hàm số 235. Dạng 7. Phương trình chứa tham số m 235. + Loại 1. Tìm điều kiện của m để phương trình có nghiệm 241. + Loại 2. Tìm điều kiện của m để phương trình có n nghiệm trên [a;b] 246. + Loại 3. Tìm điều kiện của m để phương trình có nghiệm thỏa mãn điều kiện 253. II. PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 263. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 263. Dạng 1. Phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 263. Dạng 2. Phương pháp đặt ẩn phụ 289. Dạng 3. Phương pháp mũ hóa Lôgarit 304. Dạng 4. Phương pháp tích 311. Dạng 5. Phương pháp đồ thị và hàm đặt trưng 315. Dạng 6. Phương trình chứa tham số m 321. 6. BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. I. BẤT PHƯƠNG TRÌNH MŨ. A. Lý thuyết 344. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 344. Dạng 1. Bất phương trình Mũ cơ bản và phương pháp đưa về cùng cơ số 344. Dạng 2. Phương pháp đặt ẩn phụ 356. Dạng 3. Phương pháp Lôgarit hóa và bất phương trình tích 365. Dạng 4. Phương pháp sử dụng tính đơn điệu của hàm số 368. Dạng 5. Bất phương trình chứa tham số m 370. II. BẤT PHƯƠNG TRÌNH LÔGARIT. A. Lý thuyết 382. B. Phân dạng, bài tập minh họa và câu hỏi trắc nghiệm 382. Dạng 1. Bất phương trình Lôgarit cơ bản và phương pháp đưa về cùng cơ số 382. Dạng 2. Phương pháp đặt ẩn phụ 406. Dạng 3. Phương pháp biến đổi về phương trình tích 414.

Nguồn: toanmath.com

Đọc Sách

113 bài tập trắc nghiệm phương trình mặt phẳng - Huỳnh Công Dũng
Tài liệu gồm 15 trang với 113 bài tập trắc nghiệm thuộc chuyên đề phương trình mặt phẳng có đáp án.
Các dạng bài tập viết phương trình đường thẳng trong không gian - Nguyễn Thị Thu
Tài liệu gồm 19 trang hướng dẫn giải các dạng toán viết phương trình đường thẳng trong không gian. Trong chương trình Hình học 12, bài toán viết phương trình đường thẳng trong không gian là bài toán hay và không quá khó. Để làm tốt bài toán này đòi hỏi học sinh phải nắm vững kiến thức hình học không gian, mối quan hệ giữa đường thẳng, mặt phẳng và mặt cầu. Là dạng toán chiếm tỷ lệ nhiều trong các đề thi tốt nghiệp THPT và thi vào Cao đẳng, Đại học nên yêu cầu học sinh phải làm tốt được dạng toán này là hết sức cần thiết. Trong quá trình giảng dạy, tôi nhận thấy các em còn lúng túng nhiều trong quá trình giải các bài toán về viết phương trình đường thẳng. Nhằm giúp các em giảm bớt khó khăn khi gặp dạng toán này tôi đã mạnh dạn đưa ra chuyên đề : “Phân loại các dạng bài tập viết về phương trình đường thẳng trong không gian”. Trong chuyên đề, tôi đã đưa ra phân loại bài tập viết phương trình đường thẳng từ dễ đến khó để học sinh tiếp cận một cách đơn giản, dễ nhớ và từng bước giúp học sinh hình thành tư duy tự học, tự giải quyết vấn đề. Ngoài ra, giúp cho các em làm tốt các bài thi tốt nghiệp cũng như thi vào các trường Cao đẳng và Đại học. Chuyên đề gồm 3 phần: + Phần I: Phương pháp chung để giải toán + Phần II: Một số dạng toán thường gặp + Phần III: Bài tập tự luận tự luyện + Phần IV: Bài tập trắc nghiệm tự luyện [ads] Các dạng toán viết phương trình đường thẳng trong không gian: + Dạng 1: Viết phương trình tham số và phương trình chính tắc của đường thẳng d biết d đi qua điểm M (x0; y0; z0) và có vectơ chỉ phương u = (a; b; c). + Dạng 2: Viết phương trình tham số của đường thẳng d biết d đi qua hai điểm A, B cho trước. + Dạng 3: Viết phương trình đường thẳng d đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4: Viết phương trình đường thẳng d đi qua điểm M và song song với đường thẳng d’. + Dạng 5: Đường thẳng d đi qua điểm M và song song với 2 mặt phẳng cắt nhau (P) và (Q). + Dạng 6: Viết phương trình đường thẳng d đi qua điểm M, song song với mặt phẳng (P) và vuông góc với đường thẳng d’ (d’ không vuông góc với (P)). + Dạng 7 : Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng d1 và d2 (d1 và d2 là hai đường thẳng chéo nhau). + Dạng 8: Viết phương trình đường thẳng d đi qua điểm M đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 10: Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 11: Viết phương trình đường thẳng d nằm trong mp(P) đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 12: Viết phương trình đường thẳng d song song với d’ đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 13: Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song d1 và d2 đồng thời d nằm trong mặt phẳng chứa d1 và d2. + Dạng 14: Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng d1 và d2 chéo nhau. + Dạng 15 : Viết phương trình tham số của đường thẳng d là hình chiếu của d’ trên mặt phẳng (P).
81 bài tập trắc nghiệm phương pháp tọa độ trong không gian - Hà Hữu Hải
Tài liệu gồm 11 trang với các bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án. Trích dẫn tài liệu : + Trong không gian với hệ trục Oxyz, cho 3 điểm A(1; 0; 0), B(0; 2; 0), C(0; 0; 3). Viết phương trình mặt phẳng đi qua 3 điểm A, B, C. A. 6x – 3y + 2z – 6 = 0 B. 6x + 3y + 2z + 6 = 0 C. x + 2y + 3z – 1 = 0 D. 6x + 3y + 2z – 6 = 0 [ads] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(1; 1; 3), N(1; 1; 5), P(3; 0; 4). Phương trình nào sau đây là phương trình mặt phẳng đi qua điểm M và vuông góc với đường thẳng NP? A. x – y – z + 3 = 0 B. x – 2y – z − 0 = 0 C. 2x – y – z + 2 = 0 D. 2x – y + z – 4 = 0 + Phương trình mặt phẳng đi qua 3 điểm A(0; 0; 1), B(2; 1; -1), C(-1; -2; 0) là: A. 5x – 4y + 3z – 3 = 0 B. 5x – 4y + 3z – 9 = 0 C. 5x – y + 3z – 33 = 0 D. x – 4y + z – 6 = 0
Bài tập trắc nghiệm phương pháp tọa độ trong không gian - Đặng Ngọc Hiền
Tài liệu gồm 17 trang tuyển chọn các bài tập trắc nghiệm phương pháp tọa độ trong không gian. Tóm tắt lý thuyết và công thức cơ bản I. Vectơ pháp tuyến của mặt phẳng II. Phương trình mặt phẳng III. Khoảng cách từ một điểm đến một mặt phẳng IV. Vị trí tương đối của hai mặt phẳng VI. Góc giữa hai mặt phẳng Các dạng toán và bài tập trắc nghiệm Loại 1. Vectơ pháp tuyến của mặt phẳng Loại 2. Viết phương trình mặt phẳng (biết điểm và VTPT của mặt phẳng) Loại 3. Viết phương trình mặt phẳng (phương trình mặt phẳng theo đoạn chắn) [ads] Loại 4. Viết phương trình mặt phẳng (biết VTPT và một điều kiện) Loại 5. + Khoảng cách từ một điểm đến một mặt phẳng + Vị trí tương đối của hai mặt phẳng Loại 6. + Vị trí tương đối giữa mặt phẳng và mặt cầu. + Hình chiếu của một điểm lên mặt phẳng Loại 7. + Góc giữa hai mặt phẳng + Phương trình mặt phẳng (Biết hai điểm thuộc mặt phẳng và góc)