Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Sầm Sơn Thanh Hóa

Nội dung Đề thi HSG lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Sầm Sơn Thanh Hóa Bản PDF Đề thi HSG Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa là một đề thi có độ khó cao, gồm 5 bài toán dạng tự luận. Thí sinh có thời gian làm bài trong vòng 150 phút. Đề thi bao gồm các bài toán đa dạng, có tính logic cao và yêu cầu sự tư duy sáng tạo.

Một trong các câu hỏi trong đề thi là "Số M được chia thành ba phần tỉ lệ với nhau như 0,25 : 0,375 : 0,1(3). Tìm số M biết rằng tổng các bình phương của ba phần đó bằng 4564." Câu hỏi này đòi hỏi thí sinh phải áp dụng kiến thức về tỉ lệ và phép toán để giải quyết vấn đề. Đây là một bài toán không chỉ đòi hỏi tính toán mà còn yêu cầu sự khéo léo trong việc tìm ra cách giải phù hợp.

Đề thi cũng đề cập đến việc tìm các giá trị nguyên của biểu thức N = 2^(3x-4) * 1/(2^x) để biểu thức có giá trị nguyên. Đây là một bài toán yêu cầu thí sinh áp dụng kiến thức về số mũ và cần có sự kiên nhẫn trong việc giải quyết vấn đề.

Ngoài ra, đề thi còn đưa ra một bài toán về tam giác, yêu cầu thí sinh chứng minh các quy luật và tính chất của tam giác cũng như tư duy hình học. Đây là một bài toán khó, đòi hỏi sự tỉ mỉ và chính xác trong từng bước giải.

Cuối cùng, đề thi cũng cung cấp lời giải chi tiết và hướng dẫn chấm điểm, giúp học sinh hiểu rõ hơn về cách giải và đánh giá bài làm của mình.

Tóm lại, đề thi HSG Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa là một bài kiểm tra đặc biệt thách thức học sinh và đòi hỏi sự tư duy, logic và kiên nhẫn. Đây là cơ hội để học sinh thể hiện khả năng của mình và phát triển kỹ năng giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm tất cả các số x, y nguyên dương, p nguyên tố thỏa mãn: x2 – 3xy + p2y2 = 12p. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn 2×5 – 1 chia hết cho y4 và 2y2 + 1 chia hết cho x4. + Cho tam giác ABC không cân tại A, cạnh BC cố định, đỉnh A di động. Vẽ phân giác trong AD của tam giác. Trên tia CA lấy điểm E sao cho CE = AB. Gọi I là trung điểm của AE. Chứng minh rằng đường thẳng đi qua I và song song với AD luôn đi qua một điểm cố định.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Anh Sơn – Nghệ An : + Một người mang một số tiền vào siêu thị mua hoa quả và nhẩm tính với số tiền đó có thể mua được 3kg nho hoặc 4kg táo hoặc 5kg mận. Tính giá tiền mỗi loại, biết 3kg táo đắt hơn 2kg mận là 210 000 đồng. + Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm BC. a) Chứng minh các tam giác DAB và DAC vuông cân. b) Lấy điểm M bất kỳ trên đoạn CD. Kẻ các đoạn thẳng BE và CF vuông góc với đường thẳng AM (E; F thuộc đường thẳng AM). Chứng minh rằng: BE = AF. c) Chứng minh tam giác DEF vuông cân. + Cho ABC cân tại B, có ABC = 80 độ. Lấy điểm I nằm trong tam giác sao cho IAC = 10 độ và ICA = 30 độ. Tính số đo AIB.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Quảng Ninh - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Chứng minh rằng với mọi số nguyên dương m và n thì mn(m2 – 1)(n2 + 2) chia hết cho 9. + Cho đa thức f(x), biết rằng khi chia f(x) cho x – 1 thì dư 3, chia cho x – 2 thì dư 5, chia cho (x – 1)(x – 2) thì được thương là 2x và còn dư. Tìm đa thức f(x). + Cho tam giác ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC tại H, tia phân giác của HAC cắt BC tại D. a) Chứng minh BA = BD. b) Trên tia đối của tia AB lấy điểm K sao cho AK = HD. Kẻ DE vuông góc với AC tại E. Chứng minh KE // AD. c) Gọi F là giao điểm của HK với AD, chứng minh F là trung điểm của đoạn thẳng HK.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số nguyên. Biết rằng f(2), f(0), f(-2) đồng thời chia hết cho 3. Chứng minh a, b, c đều chia hết cho 3. + Tổng số học sinh ba lớp 7A, 7B, 7C của một trường THCS là 94 học sinh. Nếu chuyển 1 học sinh từ lớp 7A và 3 học sinh từ lớp 7B sang lớp 7C thì số học sinh của ba lớp 7A, 7B, 7C lần lượt tỉ lệ nghịch với 4; 5; 3. Tính số học sinh lúc đầu của mỗi lớp. + Cho tam giác ABC nhọn (AB < AC), kẻ tia phân giác AI (I thuộc BC) của góc BAC. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Chứng minh IB = ID. b) Tia DI cắt tia AB tại E, tia AI cắt tia EC tại H. Chứng minh H là trung điểm của EC. 2) Cho tam giác ABC vuông tại C, kẻ CH vuông góc với AB (H thuộc AB). Chứng minh AC + BC < AB + CH.