Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập tỉ số thể tích khối đa diện có lời giải chi tiết

Trong quá trình học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và luyện tập với các đề thi thử THPT Quốc gia môn Toán, chúng ta thường bắt gặp các bài toán vận dụng tính tỉ số thể tích giữa hai khối đa diện. Để giải quyết được dạng toán này, ngoài việc nắm vững công thức tính thể tích các khối đa diện thường gặp, còn phải biết vận dụng các định lí về tỉ số thể tích … trong trường hợp việc tính thể tích khối đa diện là phức tạp hoặc không có đủ giả thiết để tính toán. giới thiệu đến bạn đọc đề bài và lời giải chi tiết 130 bài tập tỉ số thể tích khối đa diện có lời giải chi tiết, với nhiều biến dạng khác nhau, đồ phức tạp khác nhau. Trích dẫn một số bài toán trong tài liệu bài tập tỉ số thể tích khối đa diện có lời giải chi tiết: + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 độ. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tính tỉ số thể tích giữa hai phần đó. + Trong không gian Oxyz, cho các điểm A, B, C lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện: tỉ số giữa diện tích của tam giác ABC và thể tích khối tứ diện OABC bằng 3/2. Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt đáy. Biết góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 45 độ. Gọi V1, V2 lần lượt là thể tích khối chóp S.AHK và S.ACD với H, K lần lượt là trung điểm của SC và SD. Tính độ dài đường cao của khối chóp S.ABCD và tỉ số k = V1/V2. + Cho khối tứ diện OABC với OA, OB, OC vuông góc từng đôi một và OA = a, OB = 2a, OC = 3a. Gọi M, N lần lượt là trung điểm của hai cạnh AC, BC. Thể tích của khối tứ diện OCMN tính theo a bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích 48. Trên các cạnh SA, SB, SC, SD lần lượt lấy các điểm A′, B′, C′ và D′ sao cho SA’/SA = SC’/SC = 1/3 và SB’/SB = SD’/SD = 3/4. Tính thể tích V của khối đa diện lồi S.A’B’C’D’.

Nguồn: toanmath.com

Đọc Sách

Bài tập vận dụng min - max hình học không gian có lời giải chi tiết
giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tuyển chọn các bài tập vận dụng min – max hình học không gian có lời giải chi tiết, tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Các bài toán thuộc chủ đề min – max (giá trị lớn nhất – giá trị nhỏ nhất) trong hình học không gian đa phần là các bài toán khó, là câu phân loại học sinh khá giỏi trong các đề thi, đề kiểm tra và gần như không thể thiếu trong các đề thi THPT Quốc gia môn Toán. Thông qua các bài toán được phân tích và giải chi tiết, hy vọng các em sẽ rút ra được những kỹ thuật xử lý khi gặp dạng toán này. Trích dẫn tài liệu bài tập vận dụng min – max hình học không gian có lời giải chi tiết : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = b và vuông góc với mặt phẳng (ABCD). Điểm M thay đổi trên cạnh CD, H là hình chiếu vuông góc của S trên BM. Tìm giá trị lớn nhất của thể tích khối chóp S.ABH theo a, b. [ads] + Gọi x, y, z là chiều dài, chiều rộng và chiều cao của thùng giấy dạng hình hộp chữ nhật không có nắp trên (hình vẽ). S là tổng diện tích xung quanh và đáy còn lại. Trong các thùng có cùng diện tích S, tìm tổng x + y + z theo S của chiếc thùng có thể tích lớn nhất. + Cho tứ diện ABCD có DA = DB = DC = 6 và đôi một vuông góc với nhau. Điểm M thay đổi trong tam giác ABC. Các đường thẳng đi qua M song song DA, DB, DC theo thứ tự cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt tại A1, B1, C1. Tìm thể tích lớn nhất của khối tự diện MA1B1C1 khi M thay đổi.
Lý thuyết và bài tập hình học không gian - Nguyễn Tất Đỉnh
Tài liệu gồm 64 trang tổng hợp lý thuyết, phân dạng toán và tuyển chọn bài tập trắc nghiệm hình học không gian, tài liệu được biên soạn bởi thầy Nguyễn Tất Đỉnh. Nội dung tài liệu : + Phần 1. Tổng hợp lý thuyết khối đa diện và các kiến thức liên quan. + Phần 2. Phân dạng bài toán hình học không gian kèm các ví dụ minh họa có lời giải. + Phần 3. Tuyển chọn bài tập trắc nghiệm hình không gian có đáp án và lời giải chi tiết. [ads] Xem thêm : + Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu – Trần Đình Cư + Bài tập trắc nghiệm chuyên đề khối đa diện, mặt nón – trụ – cầu – Đặng Việt Đông + Chuyên đề hình học không gian dành cho học sinh trung bình – yếu
Bài tập trắc nghiệm khối đa diện và khối tròn xoay - Nguyễn Khánh Nguyên
Tài liệu gồm 40 trang với 300 bài tập trắc nghiệm chủ đề khối đa diện và khối tròn xoay trích trong các đề thi thử THPT Quốc gia. + Chủ đề 1. Khối đa diện + Chủ đề 2. Khối chóp + Chủ đề 3. Thể tích lăng trụ + Chủ đề 4. Khoảng cách + Chủ đề 5. Khối tròn xoay + Chủ đề 6. Khối nón + Chủ đề 7. Khối trụ + Chủ đề 8. Khối cầu + Chủ đề 9. Hỗn hợp: Nón – Trụ – Cầu + Chủ đề 10. Toán thực tế [ads] Trích dẫn tài liệu : + [CHUYÊN TRẦN PHÚ – 2017] Từ một nguyên vật liệu cho trước, một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm2. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy B. Hình trụ và chiều cao bằng bán kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình trụ và chiều cao bằng đường kính đáy + [ĐỒNG ĐẬU – 2017] Trong các mệnh đề sau, mệnh đề nào sai? A. Hình tạo bởi một số hữu hạn các đa giác được gọi là hình đa diện B. Khối đa diện bao gồm phần không gian được giới hạn bởi hình đa diện và cả hình đa diện đó C. Mỗi cạnh của một đa giác trong hình đa diện là cạnh chung của đúng hai đa giác D. Hai đa giác bất kì trong một hình đa diện hoặc là không có điểm chung, hoặc là có một đỉnh chung, hoặc là có một cạnh chung + [QUỐC HỌC HUẾ – 2017] Trong không gian cho hai điểm phân biệt A, B cố định. Tìm tập hợp tất cả các điểm M trong không gian thỏa mãn vtMA.vtMB = 3/4.AB^2 A. Mặt cầu đường kính AB B. Tập hợp rỗng (tức là không có điểm M nào thỏa mãn điều kiện trên) C. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = AB D. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = 3/4AB
Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu - Trần Đình Cư
Tài liệu tóm tắt lý thuyết, phân dạng, phương pháp giải và bài tập trắc nghiệm các dạng toán về khối đa diện, mặt nón, mặt trụ và mặt cầu. Chương 1. Khối đa diện Bài 1. Khái niệm về khối đa diện Bài 2. Khối đa diện lồi và khối đa diện đều Bài 3. Khái niệm về thể tích khối đa diện Vấn đề 1. Thể tích khối chóp + Dạng 1. Khối chóp có cạnh bên vuông góc đáy + Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy + Dạng 3. Khối chóp có mặt bên vuông góc với đáy + Dạng 4. Khối chóp đều + Dạng 5. Tỉ lệ thể tích [ads] Vấn đề 2. Thể tích khối lăng trụ + Dạng 1. Khối lăng trụ đứng + Dạng 2. Khối lăng trụ đều + Dạng 3. Khối lăng trụ xiên Chương 2. Mặt nón, mặt trụ và mặt cầu Bài 1. Khái niệm về mặt tròn xoay Vấn đề 1. Mặt nón, hình nón và khối nón Vấn đề 2. Mặt trụ – hình trụ và khối trụ Bài 2. Mặt cầu + Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông + Dạng 2. Hình chóp có các cạnh bên bằng nhau + Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy + Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy