Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG thành phố lớp 12 môn Toán năm 2019 2020 sở GD ĐT Hải Phòng

Nội dung Đề chọn HSG thành phố lớp 12 môn Toán năm 2019 2020 sở GD ĐT Hải Phòng Bản PDF Ngày 19 tháng 09 năm 2019, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi thành phố môn Toán lớp 12 năm học 2019 – 2020. Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn HSG thành phố Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Hải Phòng, đề thi dành cho bảng không chuyên, đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề chọn HSG thành phố Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Hải Phòng : + Cho hình lăng trụ đứng ABC.A’B’C’ có AB = a, AC = 2a, AA’ = 2a√5 và góc BAC bằng 120 độ. Gọi M là trung điểm của cạnh CC’. a) Chứng minh rằng MB vuông góc với A M’. b) Tính khoảng cách từ điểm A đến mặt phẳng (A’BM) theo a. [ads] + Từ tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên được lấy ra có mặt đúng ba chữ số khác nhau. + Trong mặt phẳng với hệ tọa độ Oxy cho tứ giác ABCD nội tiếp đường tròn đường kính BD. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các đường thẳng BD và CD. Biết A(4;6), đường thẳng HK có phương trình 3x – 4y – 4 = 0, điểm C thuộc đường thẳng d1: x + y – 2 = 0 và điểm B thuộc đường thẳng d2: x – 2y – 2 = 0, điểm K có hoành độ nhỏ hơn 1. Tìm tọa độ các điểm B và C. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 12 năm 2022 - 2023 cụm Tân Yên - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp cơ sở môn Toán 12 năm học 2022 – 2023 cụm Tân Yên, tỉnh Bắc Giang; đề thi mã đề 113, hình thức 70% trắc nghiệm (40 câu – 14 điểm) kết hợp 30% tự luận (03 câu – 06 điểm), thời gian làm bài: 120 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 12 năm 2022 – 2023 cụm Tân Yên – Bắc Giang : + Hai quả bóng hình cầu có kích thước khác nhau được đặt ở hai góc của một căn nhà hình hộp chữ nhật. Mỗi quả bóng tiếp xúc với hai bức tường và nền của căn nhà đó. Trên bề mặt của mỗi quả bóng, tồn tại một điểm có khoảng cách đến hai bức tường quả bóng tiếp xúc và đến nền nhà lần lượt là 9 10 13. Tổng độ dài mỗi đường kính của hai quả bóng đó là? + Thả một quả cầu đặc có bán kính 3 cm vào một vật hình nón (có đáy nón không kín) (như hình vẽ bên). Cho biết khoảng cách từ tâm quả cầu đến đỉnh nón là 5 cm. Tính thể tích (theo đơn vị cm3) phần không gian kín giới hạn bởi bề mặt quả cầu và bề mặt trong của vật hình nón. + Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của các tam giác SAB, SBC, SCD, SDA và S’ là điểm đối xứng với S qua O. Thể tích của khối chóp S’.MNPQ bằng?
Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2022 - 2023 sở GDĐT Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT & GDTX năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho hàm số y = f(x) = x3 − 3×2 + mx + 1 có đồ thị (Cm) với m là tham số. 1) Tìm tất cả các giá trị thực của m để đồ thị (Cm) có hai điểm cực trị. 2) Khi (Cm) có hai điểm cực trị A và B, tìm m để khoảng cách từ điểm là I đến đường thẳng AB lớn nhất. + Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn (O). Gọi S là tập hợp các đường thẳng đi qua 2 đỉnh bất kỳ của đa giác. Chọn ngẫu nhiên hai đường thẳng từ tập S. Tìm xác suất để chọn được hai đường thẳng có giao điểm nằm trong đường tròn (O). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA = AB = a, SB = SD. Lấy M là điểm tùy ý trên đoạn thẳng OA (M khác O và A). Mặt phẳng (a) qua M, song song với SA và BD, cắt AB, SB, SD, AD lần lượt tại E, F, G, H. 1) Tứ giác EFGH là hình gì? Vì sao? 2) Xác định vị trí của M để diện tích tứ giác EFGH đạt giá trị lớn nhất.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GDĐT Ninh Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; đề thi gồm 05 câu tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Bảy ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Gieo 5 con súc sắc cân đối, đồng chất. Kí hiệu xi (1 ≤ xi ≤ 6) là số chấm trên mặt xuất hiện của con súc sắc thứ i (i = 1, 2, 3, 4, 5). Tính xác suất để một trong các số x1, x2, x3, x4, x5 bằng tổng các số còn lại. + Cho tam giác ABC nhọn, không cân. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là một điểm tùy ý trên cạnh BC (khác B, C, D). Kẻ MK là đường kính của đường tròn ngoại tiếp tam giác BKF và NK là đường kính của đường tròn ngoại tiếp tam giác CKE. Gọi L là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CKE. 1) Chứng minh rằng năm điểm A, F, H, L, E cùng nằm trên một đường tròn. 2) Chứng minh rằng bốn điểm M, H, L, N thẳng hàng. + Tìm tất cả các số có ba chữ số sao cho mỗi số gấp 22 lần tổng các chữ số đó.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Lào Cai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.