Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vectơ trong không gian, quan hệ vuông góc - Nguyễn Tài Chung

Tài liệu gồm 232 trang được biên soạn bởi thầy Nguyễn Tài Chung, bao gồm tóm tắt lí thuyết SGK, một số dạng toán trọng tâm, bài tập ôn luyện và bài tập trắc nghiệm có đáp án và lời giải chi tiết chuyên đề vectơ trong không gian, quan hệ vuông góc, giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 3. Khái quát nội dung tài liệu vectơ trong không gian – quan hệ vuông góc – Nguyễn Tài Chung: 1 Vectơ trong không gian. Sự đồng phẳng của các vectơ. + Dạng 1. Chứng minh các đẳng thức vectơ. Biểu thị một vectơ theo các vectơ không đồng phẳng. + Dạng 2. Xác định vị trí các điểm thỏa điều kiện vectơ, chứng minh các điểm trùng nhau, các điểm thẳng hàng. + Dạng 3. Điều kiện để ba vectơ đồng phẳng. Chứng minh bốn điểm cùng nằm trong một mặt phẳng, đường thẳng song song với đường thẳng, đường thẳng song song với mặt phẳng. + Dạng 4. Dùng vectơ để chứng minh đẳng thức về độ dài. 2 Hai đường thẳng vuông góc. + Dạng 5. Tính góc α giữa hai đường thẳng a và b. + Dạng 6. Chứng minh hai đường thẳng a và b vuông góc với nhau. 3 Đường thẳng vuông góc với mặt phẳng. + Dạng 7. Chứng minh đường thẳng a vuông góc với mp(P). + Dạng 8. Chứng minh hai đường thẳng vuông góc với nhau. + Dạng 9. Dựng mặt phẳng (P) qua điểm O và vuông góc với đường thẳng d. [ads] + Dạng 10. Dựng đường thẳng đi qua một điểm A cho trước và vuông góc với mặt phẳng (P) cho trước. Tính khoảng cách từ một điểm đến một mặt phẳng. + Dạng 11. Xác định góc φ (với 00 ≤ φ ≤ 900) giữa đường thẳng a và mặt phẳng (P). 4 Hai mặt phẳng vuông góc. + Dạng 12. Xác định góc giữa hai mặt phẳng. Diện tích hình chiếu của một đa giác. + Dạng 13. Chứng minh hai mặt phẳng (P) và (P’) vuông góc với nhau. + Dạng 14. Cho trước mặt phẳng (Q) và đường thẳng a không vuông góc với mặt phẳng (Q). Xác định mặt phẳng (P) chứa đường thẳng a và (P)⊥(Q). + Dạng 15. Xác định chân đường vuông góc hạ từ một điểm xuống một mặt phẳng: Cho mặt phẳng (P) và điểm M không thuộc mặt phẳng đó. Xác định hình chiếu của M trên (P). 5 Khoảng cách. + Dạng 16. Tính khoảng cách từ M đến đường thẳng ∆. + Dạng 17. Tính khoảng cách từ điểm M đến mặt phẳng (P). + Dạng 18. Dựng đoạn vuông góc chung của hai đường thẳng chéo nhau a và b. Khoảng cách giữa hai đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Bài toán về góc trong không gian
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về góc trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: GÓC GIỮA HAI ĐƯỜNG THẲNG. 1. Định nghĩa góc giữa hai đường thẳng. 2. Cách xác định góc giữa hai đường thẳng. 3. Phương pháp tính góc giữa hai đường thẳng. Vấn đề 2: GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. + Dạng 1: Góc giữa cạnh bên và mặt đáy. + Dạng 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao. + Dạng 3: Góc giữa đường cao và mặt bên. + Dạng 4: Góc giữa cạnh bên và mặt bên. Vấn đề 3: GÓC GIỮA HAI MẶT PHẲNG. + Dạng 1: Góc giữa mặt bên và mặt đáy. + Dạng 2: Góc giữa hai mặt bên. + Dạng 3: Sử dụng định lý hình chiếu để tính góc giữa hai mặt phẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn tập góc và khoảng cách vận dụng cao
Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề góc và khoảng cách vận dụng cao (VDC) lớp 11 THPT. Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 1). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 2). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 3). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 4). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 5). Vận dụng cao góc nhị diện – (phần 1). Vận dụng cao góc nhị diện – (phần 2). Vận dụng cao góc nhị diện – (phần 3). Vận dụng cao góc nhị diện – (phần 4). Vận dụng cao góc nhị diện – (phần 5). Vận dụng cao góc nhị diện – (phần 6). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 1). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 2). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 3). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 4). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 5). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 1). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 2). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 3). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 4). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 5). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 7). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 8). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 9). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 10). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 11). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 12). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 13). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 14).
Phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc
Tài liệu gồm 173 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3 (Toán 11). BÀI 1 . VECTƠ TRONG KHÔNG GIAN. Dạng 1. Biểu diễn vectơ. Dạng 2. Đẳng thức vectơ. Dạng 3. Đồng phẳng của ba vectơ. Dạng 4. Tìm điểm thỏa mãn đẳng thức vectơ. BÀI 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. Dạng 1. Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc trong không gian. BÀI 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh đường thẳng vuông góc với mặt phẳng. Từ đó suy ra đường thẳng vuông góc với đường thẳng. Dạng 3. Xác định góc – hình chiếu – tính độ dài. Dạng 4. Thiết diện. BÀI 4 . HAI MẶT PHẲNG VUÔNG GÓC. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Tính góc giữa hai mặt phẳng. Dạng 4. Thiết diện. BÀI 5 . KHOẢNG CÁCH. Dạng 1. Khoảng cách từ một điểm đến đường thẳng. Dạng 2. Khoảng cách từ một điểm đến mặt phẳng. Dạng 3. Khoảng cách giữa hai mặt phẳng song song, khoảng cách từ đường thẳng đến mặt phẳng. Dạng 4. Khoảng cách giữa hai đường thẳng chéo nhau.
Hướng dẫn giải các dạng toán vectơ trong không gian, quan hệ vuông góc
Tài liệu gồm 113 trang, hướng dẫn giải các dạng toán vectơ trong không gian, quan hệ vuông góc trong chương trình Hình học 11 chương 3. BÀI 1 . VECTƠ TRONG KHÔNG GIAN. + Dạng 1.1. Xác định véctơ và các khái niệm có liên quan. + Dạng 1.2. Chứng minh đẳng thức véctơ. + Dạng 1.3. Tìm điểm thỏa mãn đẳng thức vecto. + Dạng 1.4. Tích vô hướng của hai véctơ. + Dạng 1.5. Chứng minh ba véctơ đồng phẳng. + Dạng 1.7. Ứng dụng véctơ chứng minh bài toán hình học. BÀI 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. + Dạng 2.1. Xác định góc giữa hai vec-tơ. + Dạng 2.2. Xác định góc giữa hai đường thẳng trong không gian. + Dạng 2.3. Sử dụng tính chất vuông góc trong mặt phẳng. + Dạng 2.4. Hai đường thẳng song song cùng vuông góc với một đường thẳng thứ ba. BÀI 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. + Dạng 3.1. Đường thẳng vuông góc với mặt phẳng. + Dạng 3.2. Góc giữa đường thẳng và mặt phẳng. + Dạng 3.3. Xác định thiết diện của một khối đa diện cắt bởi mặt phẳng đi qua một điểm và vuông góc với một đường thẳng cho trước. BÀI 4 . HAI MẶT PHẲNG VUÔNG GÓC. + Dạng 4.1. Tìm góc giữa hai mặt phẳng. + Dạng 4.2. Tính diện tích hình chiếu của đa giác. + Dạng 4.3. Chứng minh hai mặt phẳng vuông góc. + Dạng 4.4. Thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng. BÀI 5 . KHOẢNG CÁCH. + Dạng 5.1. Khoảng cách từ một điểm tới một đường thẳng. + Dạng 5.2. Khoảng cách từ một điểm đến một mặt phẳng. + Dạng 5.3. Khoảng cách giữa đường và mặt song song – Khoảng cách giữa hai mặt song song. + Dạng 5.4. Đoạn vuông góc chung, khoảng cách giữa hai đường thẳng chéo nhau. BÀI 6 . ĐỀ KIỂM TRA CHƯƠNG 3.