Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 12 năm 2021 - 2022 trường Nguyễn Khuyến Lê Thánh Tông - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra thường xuyên môn Toán 12 năm học 2021 – 2022 trường THCS – THPT Nguyễn Khuyến và TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh (mã đề 511); kỳ thi được diễn ra vào ngày 20 tháng 03 năm 2022. Trích dẫn đề kiểm tra Toán 12 năm 2021 – 2022 trường Nguyễn Khuyến & Lê Thánh Tông – TP HCM : + Cho đa giác đều A1A2 · · · A20. Số ngũ giác có 5 đỉnh lấy từ 20 điểm A1 A2 · · · A20 và có đúng 1 cạnh là cạnh của đa giác A1A2 · · · A20 là? + Cho khối chóp S.ABCD có đáy là hình bình hành, có thể tích bằng 24cm3. Gọi E là trung điểm SC. Một mặt phẳng chứa AE cắt các cạnh SB và SD lần lượt tại M và N. Tìm giá trị nhỏ nhất của thể tích khối chóp S.AMEN. + Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A (a; 0; 0), B (0; b; 0), C (0; 0; c), trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I (1; 2; 3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn 200 bài toán VD VDC từ các đề thi thử tốt nghiệp THPT môn Toán
Nội dung Tuyển chọn 200 bài toán VD VDC từ các đề thi thử tốt nghiệp THPT môn Toán Bản PDF - Nội dung bài viết Tuyển chọn 200 bài toán VD VDC từ các đề thi thử tốt nghiệp THPT môn Toán Tuyển chọn 200 bài toán VD VDC từ các đề thi thử tốt nghiệp THPT môn Toán Tài liệu này được biên soạn bởi tác giả Trương Công Đạt, với 174 trang, tập hợp 200 bài toán mức độ vận dụng – vận dụng cao (VD – VDC) từ các đề thi thử tốt nghiệp THPT môn Toán toàn quốc. Mỗi bài toán đều có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ cách giải và áp dụng kiến thức. Các bài toán trong tài liệu được trình bày theo nhiều cách giải khác nhau, bao gồm phương pháp tự luận, phương pháp giải nhanh trắc nghiệm, và phương pháp sử dụng máy tính cầm tay Casio / Vinacal, giúp học sinh nắm vững phương pháp giải bài tập. Ví dụ về bài toán trong tài liệu: + Đưa ra hàm số f(x) là hàm đa thức bậc 3 và đồ thị tương ứng. Giả sử hàm g(x) = f(2x + 3) + m. Tìm giá trị của m sao cho giá trị nhỏ nhất của g(x) trên đoạn [0;1] là 2022. + Cho hai điểm I (2;3;3) và J (4;−1;1) trong không gian. Xét khối trụ (T) có đường tròn đáy nằm trên mặt cầu IJ và có hai tâm trên đường thẳng IJ. Khi thể tích của khối trụ (T) đạt lớn nhất, tổng các hệ số của phương trình mặt phẳng chứa đường tròn đáy là bao nhiêu? + Phương trình z2 − 2z − m + 2 = 0 trên tập hợp số phức. Tìm tập hợp các giá trị m để phương trình có hai nghiệm phân biệt, biểu diễn hình học bởi hai điểm A và B sao cho diện tích tam giác ABC bằng 2√2 với C(−1;1). Tổng của các giá trị m thỏa mãn là bao nhiêu?
Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 2022)
Nội dung Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 2022) Bản PDF - Nội dung bài viết Toàn cảnh tài liệu ôn thi tốt nghiệp THPT môn Toán Toàn cảnh tài liệu ôn thi tốt nghiệp THPT môn Toán Tài liệu "Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017-2022)" có tổng cộng 574 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt. Tài liệu này tổng hợp và phân loại theo chuyên đề các dạng toán thường xuất hiện trong các đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016-2017 đến năm học 2021-2022. Mỗi chuyên đề được trình bày kèm đáp án và lời giải chi tiết, giúp học sinh ôn tập một cách hiệu quả cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. Mục lục tài liệu bao gồm: I. GIẢI TÍCH Chương 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ Chương 2. HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT Chương 3. NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG Chương 4. SỐ PHỨC II. HÌNH HỌC Chương 1. KHỐI ĐA DIỆN Chương 2. MẶT NÓN. MẶT TRỤ. MẶT CẦU Chương 3. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Tài liệu này không chỉ cung cấp kiến thức mà còn hướng dẫn học sinh cách giải quyết các dạng bài tập phức tạp, từ đó nâng cao khả năng làm bài thi hiệu quả. Đồng thời, việc phân loại theo chuyên đề giúp học sinh dễ dàng tìm kiếm và ôn tập theo từng phần một cách có tổ chức.
Phát triển các câu VD VDC đề tham khảo thi TN THPT 2022 môn Toán
Nội dung Phát triển các câu VD VDC đề tham khảo thi TN THPT 2022 môn Toán Bản PDF - Nội dung bài viết Phân tích chi tiết về tài liệu phát triển câu vận dụng trong đề thi tham khảo Toán THPT 2022 Phân tích chi tiết về tài liệu phát triển câu vận dụng trong đề thi tham khảo Toán THPT 2022 Tài liệu về Toán gồm 488 trang được biên soạn bởi thầy giáo Đặng Việt Đông, một giáo viên nổi tiếng tại trường THPT Nho Quan A, tỉnh Ninh Bình. Tài liệu này là nguồn tư liệu hữu ích để phát triển câu hỏi vận dụng và vận dụng cao trong đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2022 do Bộ Giáo dục và Đào tạo ban hành. Trong tài liệu, các câu hỏi được biên soạn kỹ lưỡng, có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Bài tập và lời giải được chia thành từng phần riêng biệt, phù hợp với đối tượng học sinh khá - giỏi và muốn đạt điểm cao (từ 9 điểm trở lên) trong kỳ thi tốt nghiệp THPT 2022 môn Toán. Tài liệu này mang lại nhiều lợi ích cho học sinh, giúp họ rèn luyện kỹ năng vận dụng lý thuyết vào thực tế, nâng cao kiến thức và hiểu biết trong môn Toán. Đồng thời, cũng hỗ trợ các giáo viên trong việc giảng dạy và chuẩn bị cho các kỳ thi quan trọng của học sinh.
Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán
Nội dung Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Bản PDF - Nội dung bài viết Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán Tài liệu hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán là tập sách gồm 98 trang, được biên soạn bởi tác giả Trần Minh Quang. Tài liệu tập trung vào việc hướng dẫn cách giải các bài toán vận dụng cao (VDC) trong các đề thi thử tốt nghiệp THPT năm 2022 môn Toán. Một trong những bài toán được trích dẫn từ tài liệu là bài toán về một bình thủy tinh hình trụ, trong đó người ta đổ nước và đặt lên miệng bình một khối lập phương đặc. Sau quá trình thử nghiệm, ta phải tính toán để xác định thể tích của bình thủy tinh. Bài toán khác liên quan đến việc tìm giá trị nhỏ nhất của biểu thức trong một hệ phương trình phức tạp. Ngoài ra, còn có bài toán liên quan đến tính thể tích của khối lăng trụ trong không gian. Tài liệu này cung cấp một cách tiếp cận chi tiết và cụ thể cho việc giải các bài toán VDC trong các đề thi thử TN THPT 2022 môn Toán. Với sự phong phú về nội dung và cách trình bày, tài liệu sẽ giúp học sinh nắm vững kỹ năng giải toán một cách chính xác và hiệu quả.