Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 tháng 04 năm 2024 phòng GDĐT Cẩm Giàng - Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 04 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Cẩm Giàng, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 tháng 04 năm 2024 phòng GD&ĐT Cẩm Giàng – Hải Dương : + Sau hai năm dân số tỉnh A tăng từ 2 500 000 người lên 2 560 360 người. Hỏi tỉ lệ tăng dân số hàng năm của tỉnh A là bao nhiêu phần trăm (biết trong hai năm tỉ lệ tăng dân số không thay đổi)? + Một học sinh đứng ở mặt đất cách tháp ăng ten (có độ cao 150 m) nhìn thấy đỉnh tháp theo một góc nghiêng lên là 20° và khoảng cách từ mắt đến mặt đất là 1m. Tính khoảng cách từ học sinh đó đến tháp (làm tròn đến mét). + Cho ∆ABC có ba góc nhọn nội tiếp đường tròn tâm O. M là một điểm trên cung nhỏ AC, sao cho AM CM. Từ M hạ ME vuông góc với AC, MF vuông góc với BC. P là trung điểm của AB, Q là trung điểm của FE. a) Chứng minh tứ giác MECF nội tiếp. b) Tia FE cắt AB tại N. Chứng minh: 0 MNP 90.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 lần 1 năm học 2023 – 2024 trường THCS Lê Quý Đôn, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 trường THCS Lê Quý Đôn – Hà Nội : + Một đội sản xuất phải làm 200 sản phẩm trong một thời gian qui định. Trong 4 ngày đầu họ đã thực hiện theo đúng kế hoạch, những ngày còn lại họ đã làm vượt mức mỗi ngày 10 sản phẩm nên đã hoàn thành công việc sớm hơn 2 ngày. Hỏi theo kế hoạch mỗi ngày đội phải làm bao nhiêu sản phẩm? + Một máy bay cất cánh theo phương có góc nghiêng so với mặt đất là 18°. Hỏi muốn đạt độ cao 3000m máy bay phải bay đoạn đường là bao nhiêu mét? (Kết quả làm tròn đến m). + Từ điểm A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến ADE thuộc nửa mặt phẳng bờ là đường thẳng OA không chứa điểm B của đường tròn (O). Gọi H là giao điểm của OA và BC. 1) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. 2) Chứng minh AO vuông góc BC tại H và AH.AO = AD.AE. 3) Đường thẳng đi qua điểm D và song song với đường thẳng BE cắt AB, BC lần lượt tại I, K. Chứng minh tứ giác OHDE nội tiếp và D là trung điểm của IK.
Đề khảo sát lần 1 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trãi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trãi, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2024. Trích dẫn Đề khảo sát lần 1 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trãi – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai xí nghiệp theo kế hoạch phải làm 720 dụng cụ. Nhờ sắp xếp hợp lý dây chuyền sản xuất nên thực tế xí nghiệp I vượt mức 10% kế hoạch, xí nghiệp II vượt mức 12% kế hoạch, do đó cả hai xí nghiệp đã làm được 800 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch. + Cho đường tròn (O) và điểm M nằm ngoài ngoài đường tròn. Kẻ tiếp tuyến MA, MB với (O) tại tiếp điểm A, B. Một đường thẳng d đi qua M cắt (O) tại C, D (MC < MD và tia MC nằm giữa hai tia MB, MO). I là trung điểm của đoạn thẳng CD. a) Chứng minh: Tứ giác MAOB là tứ giác nội tiếp. b) Chứng minh: MA2 = MC.MD. c) Cho BI cắt (O) tại điểm thứ hai là E. Chứng minh AE // CD. d) Qua I kẻ đường thẳng song song với BD cắt AB tại K. Chứng minh CK vuông góc BO.
Đề kiểm tra lần 1 Toán 9 năm 2023 - 2024 trường chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2024. Trích dẫn Đề kiểm tra lần 1 Toán 9 năm 2023 – 2024 trường chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Trên một khúc sông có hai địa điểm du lịch A và B cách nhau 1km. Một chiếc thuyền máy đi từ A đến B và nghỉ tại đó 30 phút, sau đó quay lại A. Thời gian từ lúc bắt đầu khởi hành đến khi quay trở lại A là 45 phút. Hỏi vận tốc thực của thuyền máy là bao nhiêu mét trên phút, biết rằng vận tốc của dòng nước là 50 mét trên phút? + Trái Đất được xem là có dạng hình cầu và kinh tuyến gốc của Trái Đất là một nửa đường tròn lớn, dài khoảng 20004 km. Tính bán kính của Trái Đất (lấy pi = 3,14 và làm tròn đến hàng phần mười của km). + Cho tam giác ABC có ba góc nhọn, AB < AC, nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng qua H song song với AB cắt AC tại P, đường thẳng qua H song song với AC cắt AB tại Q. Gọi N là điểm đối xứng với H qua PQ. 1) Chứng minh tứ giác ABHF là tứ giác nội tiếp. 2) Chứng minh tam giác BHQ đồng dạng với tam giác CHP và BAH = CAO. 3) Chứng minh PQ song song với AN và AH cắt NO tại một điểm nằm trên đường tròn ngoại tiếp tam giác APQ.
Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Việt Yên - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Việt Yên, tỉnh Bắc Giang (mã đề 358). Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Việt Yên – Bắc Giang : + Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là 20% và mặt hàng Y là 15% so với giá niêm yết. Bà Hiền mua 2 món hàng X và 1 món hàng Y thì phải trả số tiền là 395000 đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là 30% và mặt hàng Y là 25% so với giá niêm yết. Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là 603000 đồng. Tính giá niêm yết của mỗi món hàng X và Y (Giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá). + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là chân các đường cao) đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O;R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác ACMD nội tiếp đường tròn. b) Chứng minh rằng MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O;R) và đỉnh A di động trên cung lớn BC của đường tròn (O;R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định. + Công thức 3 h 04 x biểu diễn mối tương quan giữa cân nặng x (tính bằng kg) và chiều cao h (tính bằng m) của một con hươu cao cổ. Một con hươu cao cổ có chiều cao 2,56 m thì có cân nặng (kết quả làm tròn đến chữ số thập phân thứ nhất) là?