Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào lớp 10

Tài liệu gồm 31 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hàm số bậc nhất và hàm số bậc hai, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. Vấn đề 1 : HÀM SỐ BẬC NHẤT. 1. Định nghĩa: + Hàm số bậc nhất là hàm số được cho bởi công thức: y ax b trong đó a và b là các số thực cho trước và a ≠ 0. + Khi b = 0 thì hàm số bậc nhất trở thành hàm số y ax biểu thị tương quan tỉ lện thuận giữa y và x. 2. Tính chất: a) Hàm số bậc nhất xác định với mọi giá trị x R. b) Trên tập số thực, hàm số y ax b đồng biến khi a > 0 và nghịch biến khi a < 0. 3. Đồ thị hàm số y ax b với (a ≠ 0). + Đồ thị hàm số y ax b là đường thẳng cắt trục tung tại điểm có tung độ bằng b và cắt trục hoành tại điểm có hoành độ bằng b a. + a gọi là hệ số góc của đường thẳng y ax b. 4. Cách vẽ đồ thị hàm số y ax b. + Vẽ hai điểm phân biệt của đồ thị rồi vẽ đường thẳng đi qua 2 điểm. + Thường vẽ đường thẳng đi qua 2 giao điểm của đồ thị với các trục tọa độ. 5. Kiến thức bổ sung. Trong mặt phẳng tọa độ cho hai điểm Ax y Bx y thì 2 2 AB x x y y. Điểm M xy là trung điểm của AB thì 12 12 ; 2 2. 6. Điều kiện để hai đường thẳng song song hai đường thẳng vuông góc. Cho hai đường thẳng d y ax b 1 và đường thẳng d y ax b 2 với a a. Vấn đề 2 : HÀM SỐ BẬC HAI. Hàm số 2 y ax (a ≠ 0): Hàm số xác định với mọi số thực x. Tính chất biến thiên: + Nếu a > 0 thì hàm số đồng biến khi x > 0 nghịch biến khi x < 0. + Nếu a < 0 thì hàm đồng biến khi x < 0 nghịch biến khi x > 0. Đồ thị hàm số là một đường Parabol nhận gốc tọa độ O làm đỉnh, nhận trục tung làm trục đối xứng. Khi a > 0 thì Parabol có bề lõm quay lên trên, khi a < 0 thì Parabol có bề lõm quay xuống dưới. Đối với phương trình bậc hai 2 ax bx c a 0 0 có biệt thức 2 ∆ b ac 4. Nếu ∆ < 0 thì phương trình vô nghiệm. Nếu ∆ = 0 thì phương trình có nghiệm kép 2 b x a. Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: 1 2 b x a.

Nguồn: toanmath.com

Đọc Sách

Phân tích bình luận 111 bài toán bất đẳng thức Nguyễn Công Lợi
Nội dung Phân tích bình luận 111 bài toán bất đẳng thức Nguyễn Công Lợi Bản PDF - Nội dung bài viết Phân tích bình luận 111 bài toán bất đẳng thức của Nguyễn Công Lợi Phân tích bình luận 111 bài toán bất đẳng thức của Nguyễn Công Lợi Trên 98 trang tài liệu của tác giả Nguyễn Công Lợi, chúng ta được đưa vào thế giới của những bài toán bất đẳng thức phức tạp và thú vị. Tác giả không chỉ tuyển chọn những bài toán hay mà còn hướng dẫn chúng ta qua quá trình phân tích từng bước một để tìm ra lời giải cho chúng. Qua việc giải các bài toán này, chúng ta có cơ hội hiểu rõ hơn về cách phân tích các giả thiết và bất đẳng thức trong bài toán, từ đó đưa ra nhận định chính xác và hướng dẫn cho việc giải bài toán. Điều này không chỉ giúp chúng ta rèn luyện tư duy logic mà còn giúp chúng ta cải thiện kỹ năng giải quyết vấn đề. Tài liệu này không chỉ là một công cụ hữu ích để rèn luyện kiến thức mà còn là nguồn cảm hứng để chúng ta không ngừng trau dồi và phát triển khả năng tư duy toán học của mình. Đây thực sự là một tài liệu không thể thiếu đối với những ai đam mê toán học và mong muốn thách thức bản thân mình với những bài toán đầy tính chất khó khăn.
Chuyên đề phương trình nghiệm nguyên
Nội dung Chuyên đề phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Bài toán phương trình nghiệm nguyên: một bài toán quen thuộc trong toán học Bài toán phương trình nghiệm nguyên: một bài toán quen thuộc trong toán học Phương trình nghiệm nguyên là một dạng bài toán mà chúng ta thường gặp trong toán học. Để giải quyết bài toán này, chúng ta cần tìm ra giá trị nguyên của biến số trong phương trình. Dạng bài toán này không chỉ giúp chúng ta rèn luyện kỹ năng tính toán mà còn khuyến khích sự logic và suy luận. Khi giải phương trình nghiệm nguyên, chúng ta cần xác định giá trị nguyên của biến số sao cho phương trình được thỏa mãn. Điều này đòi hỏi chúng ta phải áp dụng các kỹ thuật tính toán, quy tắc và phương pháp giải bài toán một cách chính xác và logic. Bài toán phương trình nghiệm nguyên không chỉ giúp chúng ta hiểu rõ hơn về khái niệm của phương trình mà còn giúp chúng ta phát triển kỹ năng giải quyết vấn đề một cách tỉ mỉ và chính xác. Đồng thời, thông qua việc giải bài toán này, chúng ta cũng có thể áp dụng kiến thức vào các bài toán thực tế khác.
Chuyên đề số chính phương
Nội dung Chuyên đề số chính phương Bản PDF - Nội dung bài viết Số chính phương - một khái niệm cơ bản trong toán học Số chính phương - một khái niệm cơ bản trong toán học Số chính phương là số mà có thể được biểu diễn dưới dạng bình phương của một số nguyên. Ví dụ, 0, 1, 4, 9, 16, ... là các số chính phương vì chúng có thể được viết dưới dạng bình phương của một số nguyên. Số chính phương là một khái niệm quan trọng trong toán học và được sử dụng trong nhiều lĩnh vực khác nhau như trong số học, lý thuyết số, đại số và hình học.
Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán
Nội dung Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Bản PDF - Nội dung bài viết Giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Bài toán bất đẳng thức và cực trị luôn là những thách thức lớn đối với học sinh khi tham gia vào kì thi tuyển sinh vào lớp 10 môn Toán. Đây là phần bài thi mang tính quyết định, giúp trường chọn lọc những học sinh giỏi và xuất sắc nhất để vào học tại các lớp chuyên Toán tại các trường THPT chuyên. Để giúp các em học sinh lớp 9 chuẩn bị cho kỳ thi tuyển sinh, Sytu đã tổng hợp tài liệu lời giải cho bài toán bất đẳng thức, cực trị trong đề thi tuyển sinh lớp 10 môn Toán. Tài liệu này được biên soạn bởi tác giả Trịnh Bình, chuyên gia giàu kinh nghiệm trong lĩnh vực giáo dục Toán học. Bên dưới là một số ví dụ về nội dung và cấu trúc của tài liệu lời giải: Ví dụ 1: Cho các số dương a, b, c thỏa mãn abc = a + b + c + 2. Hãy tìm giá trị lớn nhất của biểu thức P = 1/√(a^2 + b^2) + 1/√(b^2 + c^2) + 1/√(c^2 + a^2). Ví dụ 2: Giả sử x, y, z là các số thực trong đoạn [0;2] và x + y + z = 3. Hãy chứng minh rằng x^2 + y^2 + z^2 < 6 và tìm giá trị lớn nhất của biểu thức P = x^3 + y^3 + z^3 – 3xyz. Ví dụ 3: Cho x, y, z là các số thực dương thỏa mãn xy + yz + 4zx = 32. Tìm giá trị nhỏ nhất của biểu thức P = x^2 + 16y^2 + 16z^2. Với tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề thi tuyển sinh môn Toán, các em học sinh sẽ được trang bị kiến thức và kỹ năng cần thiết để tự tin giải quyết các dạng bài tương tự trong kỳ thi sắp tới.