Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tìm điều kiện để Phương trình - Hệ phương trình có nghiệm - Đặng Thành Nam

Tài liệu gồm 40 trang hướng dẫn giải các bài toán tìm điều kiện của tham số để phương trình – hệ phương trình có nghiệm, tài liệu do thầy Đặng Thành Nam biên soạn. Dạng toán tìm điều kiện của tham số để phương trình, hệ phương trình có nghiệm thường xuất hiện trong đề thi TSĐH dưới dạng áp dụng phương pháp xét tính đơn điệu của hàm số để tìm miền giá trị của hàm số, từ đó suy ra giá trị cần tìm của tham số m. Đây là loại bài toán không khó và chiếm một điểm trong đề thi, nên nhớ áp xét tính đơn điệu của hàm số. [ads]

Nguồn: toanmath.com

Đọc Sách

Kĩ thuật xử lí phương trình - hệ phương trình vô tỉ - Đoàn Trí Dũng
Tài liệu gồm 17 trang hướng dẫn các phương pháp xử lí phương trình – hệ phương trình vô tỉ thường gặp trong các đề thi. PHẦN I: PHƯƠNG PHÁP XÉT TỔNG VÀ HIỆU Phương pháp xét tổng và hiệu sử dụng cho các phương trình vô tỷ hoặc một phương trình có trong một hệ phương trình ở dạng √A ± √B = C. Điều kiện sử dụng ở chỗ ta nhận thấy C là một nhân tử của (A – B). PHẦN II: DỰ ĐOÁN NHÂN TỬ TỪ NGHIỆM VÔ TỶ Phương pháp này tận dụng nghiệm vô tỷ mà máy tính đã dò được để đoán trước nhân tử của phương trình, hệ phương trình. Để sử dụng kỹ thuật này, chúng ta cần phải nắm được tốt quy tắc dò nghiệm SHIFT SOLVE. PHẦN III: HỆ SỐ BẤT ĐỊNH Mục đích của phương pháp hệ số bất định là tạo ra các thêm bớt giả định sao cho có nhân tử chung rồi đồng nhất hệ số để tìm ra các giả định đó. Hệ số bất định có bản chất là phân tích nhân tử và có tác dụng mạnh trong các bài toán có nhiều hơn 1 nghiệm. [ads] PHẦN IV: ĐẠO HÀM MỘT BIẾN + Kỹ thuật 1: Coi x là ẩn, y là tham số, tính đạo hàm f’x(x, y) và chứng minh hàm số đơn điệu và liên tục theo x. + Kỹ thuật 2: Phương trình f(x) = 0 có tối đa 1 nghiệm nếu f(x) đơn điệu và liên tục theo x. + Kỹ thuật 3: f(x) = f(y) → x = y nếu f(x) đơn điệu và liên tục theo x. PHẦN V: LƯỢNG GIÁC HÓA PHẦN VI: ĐẶT 2 ẨN PHỤ + Kỹ thuật 1: Đặt 2 ẩn phụ để đưa về hệ phương trình cơ bản. + Kỹ thuật 2: Đặt 2 ẩn phụ để phân tích đa thức thành nhân tử. PHẦN VII: PHƯƠNG PHÁP ĐÁNH GIÁ + Kỹ thuật 1: Đưa phương trình, hệ phương trình về dạng A^2 + B^2 ≤ 0. + Kỹ thuật 2: Sử dụng Cauchy với những bài có căn bậc lớn. + Kỹ thuật 3: Sử dụng Bunyakovsky. + Kỹ thuật 4: Sử dụng Minkowski. + Kỹ thuật 5: Sử dụng Schwartz. + Kỹ thuật 6: Sử dụng bất đẳng thức Jensen dành cho hàm lồi, hàm lõm.
Chuyên đề phương trình - bất phương trình bậc cao và phân thức hữu tỉ - Giang Sơn
Trong chương trình Toán học phổ thông nước ta, cụ thể là chương trình Đại số, phương trình và bất phương trình là một nội dung quan trọng, phổ biến trên nhiều dạng toán xuyên suốt các cấp học, cũng là bộ phận thường thấy trong các kỳ thi kiểm tra chất lượng học kỳ, thi tuyển sinh lớp 10 THPT, thi học sinh giỏi môn Toán các cấp và kỳ thi tuyển sinh Đại học – Cao đẳng với hình thức hết sức phong phú, đa dạng. Mặc dù đây là một đề tài quen thuộc, chính thống nhưng không vì thế mà giảm đi phần thú vị, nhiều bài toán cơ bản tăng dần đến mức khó thậm chí rất khó, với các biến đổi đẹp kết hợp nhiều kiến thức, kỹ năng vẫn làm khó nhiều bạn học sinh THCS, THPT. Chương trình Đại số lớp 9 THCS đã giới thiệu, đi sâu khai thác các bài toán về phương trình bậc hai, chương trình Đại số 10 THPT đưa chúng ta tiếp cận tam thức bậc hai với các định lý về dấu nhị thức bậc nhất, dấu tam thức bậc hai và ứng dụng. Trong phương trình và bất phương trình đại số nói chung, chúng ta bắt gặp rất nhiều bài toán có dạng đại số bậc cao, phân thức hữu tỷ, các bài toán có mức độ khó dễ khác nhau, đòi hỏi tư duy linh hoạt và vẻ đẹp cũng rất riêng! Từ rất lâu rồi, đây vẫn là vấn đề quan trọng, xuất hiện hầu khắp và là công đoạn cuối quyết định trong nhiều bài toán phương trình, hệ phương trình chứa căn, phương trình vi phân, dãy số… Vì thế về tinh thần, nó vẫn được đông đảo các bạn học sinh, các thầy cô giáo và các chuyên gia Toán phổ thông quan tâm sâu sắc. Sự đa dạng về hình thức của lớp bài toán căn này đặt ra yêu cầu cấp thiết là làm thế nào để đơn giản hóa, thực tế các phương pháp giải, kỹ năng, mẹo mực đã hình thành, đi vào hệ thống. Về cơ bản để làm việc với lớp phương trình, bất phương trình này chúng ta ưu tiên hạ hoặc giảm bậc của bài toán gốc, cố gắng đưa về các dạng bậc hai, bậc nhất hoặc các dạng đặc thù (đã được khái quát trước đó). [ads] Trong chuyên đề này, chuyên đề đầu tiên của lớp phương trình, bất phương trình, hệ phương trình tác giả chủ yếu đề cập tới các bài toán từ mức độ đơn giản nhất tới phức tạp nhất, dành cho các bạn học sinh bước đầu làm quen, tuy nhiên vẫn đòi hỏi tư duy logic, tỉ mỉ và chính xác. Tài liệu nhỏ được viết theo trình tự kiến thức tăng dần, không đề cập giải phương trình bậc hai, đi sâu giải phương trình bậc ba (dạng đặc biệt với nghiệm hữu tỷ và phân tích hằng đẳng thức), dạng toán trùng phương (bậc 4) và mở rộng với bậc chẵn, các phép đặt ẩn phụ cơ bản và phép đặt hai ẩn phụ quy về đồng bậc, phạm vi kiến thức phù hợp với các bạn học sinh THCS (lớp 8, lớp 9) ôn thi vào lớp 10 THPT, các bạn học sinh THPT thi học sinh giỏi Toán các cấp và luyện thi vào hệ đại học, cao đẳng, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn yêu Toán khác.
Kỹ thuật ‘đánh cả cụm khi dùng Casio giải phương trình vô tỉ - Vũ Hồng Phong
Tài liệu được tác giả nhắm đến những bạn đọc muốn thử sức với một số phương trình vô tỉ phức tạp phải dùng máy tính Casio trợ giúp và thử sức giải phương trình bậc 3. Tài liệu gồm 3 phần : + Phần đầu là 14 ví dụ giới thiệu các phương pháp dùng máy tính cầm tay tìm biểu thức liên hợp có dạng phức tạp. + Chuyên đề 1: PHƯƠNG PHÁP THẾ TRONG THỦ THUẬT SỬ DỤNG MÁY TÍNH ĐỂ TÌM NHÂN TỬ CHUNG HOẶC TÌM BIỂU THỨC TRONG NHÂN LIÊN HỢP KHI GIẢI PHƯƠNG TRÌNH VÔ TỈ. + Chuyên đề 2:  PHƯƠNG PHÁP CỘNG DÙNG TRONG THỦ THUẬT MÁY TÍNH CẦM TAY TRỢ GIÚP GIẢI PHƯƠNG TRÌNH VÔ TỈ. Mỗi phần đều gồm ví dụ có hướng dẫn chi tiết và một số bài tập giúp bạn đọc tự rèn luyện kĩ năng. [ads]
60 bài toán giải hệ phương trình bằng phương pháp hàm số điển hình - Phạm Văn Bình
Toán Math xin giới thiệu tới đọc giả tuyển tập 60 bài toán điển hình về giải hệ phương trình bằng phương pháp hàm số của tác giả Phạm Văn Bình, giáo viên trường THPT Hậu Lộc 2. Có thể nói đây là những hệ phương trình tiêu biểu nhất mà tác giả đã dày công chọn lựa, sáng tạo, đưa ra lời giải theo phương pháp xét hàm số một cách chi tiết để giúp bạn đọc nắm vững phương pháp này. Cơ sở của phương pháp giải hệ phương trình bằng phương pháp hàm số: “Nếu hệ có một trong hai phương trình ta dưa về dạng : f(x)=f(y) với x,y thuộc T thì khi đó ta khảo sát một hàm số đặc trưng y=f(t) trên T. Nếu f(t) là đơn điệu thì để f(x)=f(y) chỉ xảy ra khi x=y . Trong phương pháp này khó nhất là các em phải xác định được tập giá trị của x và y, nếu tập giá trị của chúng khác nhau thì các em không được dùng phương pháp trên mà phải chuyển chúng về dạng tích : f(x)-f(y)=0 hay: (x-y).A(x;y)=0 Khi đó ta xét trường hợp: x=y, và trường hợp A(x,y)=0.” Hy vọng tài liệu nhỏ này sẽ là hành trang giúp bạn thêm vững tin cho kỳ thi THPT Quốc gia sắp tới. Xin chân thành cám ơn bạn đọc đã thường xuyên ghé thăm và ủng hộ Toán Math. [ads]