Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết - Nguyễn Xuân Chung

Tài liệu gồm có 56 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Xuân Chung, chọn lọc các câu hỏi và bài tập trắc nghiệm chủ đề mũ và lôgarit vận dụng cao (cách gọi khác: mũ và lôgarit nâng cao, mũ và lôgarit khó, mũ và lôgarit VDC …) có đáp án, lời giải chi tiết và bình luận sau bài toán, giúp bạn đọc hiểu được hướng tư duy, tiếp cận và giải quyết bài toán; phần lời giải chi tiết được trình bày ngắn gọn, có hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh; tài liệu giúp học sinh giải quyết tốt các bài toán khó trong chương trình Giải tích 12 và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung được tác giả chia thành ba phần: phần thứ nhất gồm các câu hỏi và bài tập được trích từ các đề thi THPT Quốc gia môn Toán chính thức, các đề minh họa, đề tham khảo THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong những năm gần đây; phần thứ hai gồm các câu hỏi và bài tập được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên cả nước; phần thứ ba gồm một số câu hỏi và bài tập tương tự giúp học sinh rèn luyện thêm. [ads] Trích dẫn tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung: + Cho phương trình 2^x = √(m.2^x.cos(pi.x) – 4) với m là tham số thực. Gọi m0 là giá trị của m để phương trình đã cho có đúng 1 nghiệm thực. Mệnh đề nào sau đây đúng? + Cho hai số thực dương x và y thỏa mãn điều kiện: 3 + ln((x + y + 1)/3xy) = 9xy – 3x – 3y. Giá trị nhỏ nhất của biểu thức P = xy là? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên của m để phương trình f(2log_2 x) = m có nghiệm duy nhất trên [1/2;2). + Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a^x (a > 0 và a khác 1) qua điểm I(1;1). Giá trị của biểu thức f(2 + log_a 1/2018) bằng? + Đây là bài toán khó vì số mũ của lũy thừa là biểu thức phức tạp. Nếu để nguyên để khảo sát thì gặp khó khăn lớn khi phải đạo hàm và tìm nghiệm, rồi còn phải lập bảng biến thiên … do đó gặp tình huống này thì chúng ta nghĩ đến phương pháp đánh giá để giảm độ phức tạp. Nói như vậy: phương pháp đạo hàm là công cụ mạnh để giải toán hàm số, nhưng trong trường hợp này chưa chắc tỏ ra là “mạnh”. Bài toán trên là thi Olimpic hay sao nhỉ? Ra đề thi kiểu như vậy thì bó tay!

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm chuyên đề mũ và logarit - Đặng Việt Đông
Tài liệu gồm 54 trang với các câu hỏi trắc nghiệm được phân loại thành các phần: + LŨY THỪA (34 câu) + HÀM SỐ LŨY THỪA (49 câu) + LÔGARIT (55 câu) + HÀM SỐ MŨ, HÀM SỐ LÔGARIT (118 câu) + PHƯƠNG TRÌNH MŨ (90 câu) [ads] + LÔGARIT (64 câu) + BẤT PHƯƠNG TRÌNH MŨ (99 câu) + BẤT PHƯƠNG TRÌNH LÔGARIT (54 câu) + HỆ MŨ-LÔGARIT (22 câu) + CÁC BÀI TOÁN ỨNG DỤNG THỰC TẾ (16 câu)
Bài tập trắc nghiệm hàm mũ và logarit - Trần Duy Thúc
Nhằm cung cấp cho các Em tài liệu ôn thi THPT Quốc Gia năm 2017, Thầy Trần Duy Thúc gửi đến cho các Em tiếp quyển 4 Bài tập trắc nghiệm hàm mũ và logarit. Tài liệu được chia ra thành 6 phần: + Phần 1. Biến đổi biểu thức chứa mũ và logarit + Phần 2. Tập xác định – đạo hàm – các bài toán liên quan + Phần 3. Phương trình mũ – phương trình logarit + Phần 4. Bất phương trình mũ – bất phương trình logarit + Phần 5. Các bài toán tổng hợp + Phần 6. Bảng đáp án Cuối cùng Thầy cũng không quên nói với các Em rằng mỗi quyển tài liệu điều mang trong nó những kiến thức bổ ít và dù đã cố gắng nhưng tài liệu cũng còn trong đó những sai sót nhất định. Rất mong nhận được ý kiến đóng góp chân thành từ các Bạn đọc.
Bài tập trắc nghiệm hàm số lũy thừa, mũ và logarit - Lê Văn Đoàn
Tài liệu Bài tập trắc nghiệm hàm số lũy thừa, mũ và logarit do thầy Lê Văn Đoàn biên soạn gồm 15 trang.
Bài tập trắc nghiệm ứng dụng tích phân để tính diện tích hình phẳng
Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, tuyển chọn các bài tập trắc nghiệm chủ đề ứng dụng tích phân để tính diện tích hình phẳng, có đáp án và lời giải chi tiết; giúp học sinh lớp 12 rèn luyện khi học chương trình môn Toán 12 phần Giải tích chương 3: Nguyên Hàm, Tích Phân Và Ứng Dụng.