Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Nghệ An (chuyên)

Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Nghệ An (chuyên) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận. Thí sinh có thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Đề thi này được chuẩn bị kỹ lưỡng, với đáp án và lời giải chi tiết giúp học sinh hiểu rõ từng bước giải quyet một cách dễ dàng. Trong đề thi có nhiều bài tập đa dạng, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của thí sinh. Ví dụ, một trong những bài toán đặt ra là: "Trong hình chữ nhật có chiều dài 149 cm, chiều rộng 40 cm cho 2020 điểm phân biệt. Hãy chứng minh rằng tồn tại ít nhất 2 điểm trong số 2020 điểm đã cho mà khoảng cách giữa chúng nhỏ hơn 2 cm." Đề thi còn đòi hỏi thí sinh tìm tất cả các số nguyên dương x, y và số nguyên tố p thỏa mãn p^x – y^4 = 4, cũng như chứng minh một định lý liên quan đến số chính phương. Thông qua việc giải các bài tập trong đề thi, học sinh không chỉ nắm vững kiến thức mà còn phát triển khả năng tư duy logic, sự sáng tạo trong giải quyet vấn đề. Đề thi này là cơ hội tốt để thí sinh thử thách bản thân và chuẩn bị tốt cho tương lai học tập và sự nghiệp của mình.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 1 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội
Ngày … tháng 01 năm 2022, trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 lần thứ nhất. Đề thi thử Toán vào lớp 10 lần 1 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề).
Đề thi vào 10 môn Toán (chuyên Toán) năm 2021 - 2022 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chuyên Toán) năm 2021 – 2022 trường chuyên Lam Sơn – Thanh Hóa : + Cho bảng kẻ ô vuông kích thước 8 8 gồm có 64 ô vuông con (như hình vẽ bên). Người ta đặt 33 quân cờ vào các ô vuông con của bảng sao cho mỗi ô vuông con có không quá một quân cờ. Hai quân cờ được gọi là “chiếu nhau” nếu chúng nằm cùng một hàng hoặc nằm cùng một cột. Chứng minh rằng với mỗi cách đặt luôn tồn tại ít nhất 5 quân cờ đôi một không chiếu nhau. + Cho hai đường tròn O và O cắt nhau tại hai điểm A và B. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại P P A. Tiếp tuyến tại A của đường tròn tâm O cắt đường tròn tâm O tại Q Q A. Gọi I là điểm sao cho tứ giác AOIO là hình bình hành và D đối xứng với A qua B. a) Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác A P Q. Từ đó suy ra tứ giác A D P Q nội tiếp. b) Gọi M là trung điểm của đoạn PQ. Chứng minh ADP QDM. c) Giả sử hai đường thẳng IB và PQ cắt nhau tại S. Gọi K là giao điểm của ADvà PQ. Chứng minh: 2 1 1 SK SP SQ. + Cho các số hữu tỉ a b c đôi một phân biệt. Đặt 2 2 2 1 1 1 B a b b c c a. Chứng minh rằng B là số hữu tỉ.
Đề thi vào 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm (bảng chính thức do sở Giáo dục và Đào tạo tỉnh Nam Định công bố). Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn ABC (AB AC) nội tiếp đường tròn (O). Đường phân giác trong của BAC cắt đường tròn (O) tại D D A. Trên cung nhỏ AC của đường tròn (O) lấy điểm G khác C sao cho AG GC; một đường tròn có tâm là K đi qua A, G và cắt đoạn thẳng AD tại điểm P nằm bên trong tam giác ABC. Đường thẳng GK cắt đường tròn (O) tại điểm M M G. a) Chứng minh các tam giác KPG ODG đồng dạng với nhau. b) Chứng minh GP MD là hai đường thẳng vuông góc. c) Gọi F là giao điểm của hai đường thẳng OD và KP, đường thẳng qua A và song song với BC cắt đường tròn (K) tại điểm E E A. Chứng minh rằng tứ giác DGFP là tứ giác nội tiếp và 0 EGF 90. + Xét hai tập hợp A B khác ∅ thỏa mãn A B và A B. Biết rằng A có vô hạn phần tử và tổng của mỗi phần tử thuộc A với mỗi phần tử thuộc B là phần tử thuộc B. Gọi x là phần tử bé nhất thuộc B thỏa mãn x ≠ 1. Hãy tìm x. + Cho 1 2 12 pp p … là các số nguyên tố lớn hơn 3. Chứng minh rằng 22 2 1 2 12 pp p chia hết cho 12.
Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Hồng Phong - Nam Định (Đề 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 1); đề thi dành cho học sinh thi vào các lớp chuyên tự nhiên; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Hồng Phong – Nam Định (Đề 1) : + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O đường kính AP. Các đường cao BE và CF cắt nhau tại H. 1) Chứng minh rằng tứ giác BCEF nội tiếp và AE AC AF AB. 2) Gọi K I lần lượt là trung điểm của EF và AH. Chứng minh IK song song với AP. 3) Gọi M là giao điểm của IK và BC; N là giao điểm của MH với cung nhỏ AC của đường tròn (O). Chứng minh rằng HMC HAN. + Tìm tất cả các giá trị của tham số m để đường thẳng 2 y mx m (m ≠ 0) và đường thẳng y x 9 2 song song. + Tính thể tích của hình nón có đường sinh bằng 5cm và bán kính đáy 3cm.