Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 11 năm 2023 - 2024 sở GDĐT Nam Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn học sinh giỏi Toán 11 năm 2023 – 2024 sở GD&ĐT Nam Định : + Có hai chung cư cao tầng xây cạnh nhau với khoảng cách giữa chúng là HK m 25. Để đảm bảo an ninh, trên nóc chung cư thứ hai người ta lắp camera ở vị trí C. Gọi A B lần lượt là vị trí thấp nhất và cao nhất trên chung cư thứ nhất mà camera có thể quan sát được (tham khảo hình vẽ). Hãy tính số đo góc ACB (phạm vi camera có thể quan sát được ở chung cư thứ nhất) biết rằng chiều cao của chung cư thứ hai là CK m AH m BH m 37 4 26 (làm tròn kết quả đến hàng đơn vị theo đơn vị độ). + Phòng chăm sóc khách hàng của công ty A làm việc từ 8h00 sáng đến 20h00 mỗi ngày. Nhân viên trực tổng đài làm việc theo 2 ca, mỗi ca 8 tiếng, ca I từ 8h00 đến 16h00 và ca II từ 12h00 đến 20h00. Tiền lương của nhân viên được tính theo giờ (bảng dưới đây): Khoảng thời gian làm việc Tiền lương/giờ 8h00 – 16h00 32 000 đồng 12h00 – 20h00 30 000 đồng. Để chăm sóc khách hàng tốt nhất thì cần tối thiểu 2 nhân viên trong khoảng từ 12h00 – 20h00, tối thiểu 10 nhân viên trong giờ cao điểm từ 12h00 – 16h00 và không quá 9 nhân viên trong khoảng từ 8h00 – 16h00. Do lượng khách hàng trong khoảng 8h00 – 16h00 thường đông hơn nên phòng chăm sóc khách hàng cần số nhân viên ca I ít nhất phải gấp 1,5 lần số nhân viên của ca II. Em hãy giúp công ty A chỉ ra cách huy động số lượng nhân viên cho mỗi ca sao cho chi phí tiền lương mỗi ngày là ít nhất. + Một hộp có 25 chiếc thẻ cùng loại được đánh số từ 1 đến 25. Hai bạn An và Bình chơi trò chơi rút thẻ trong hộp như sau: hai bạn lần lượt rút thẻ, mỗi lượt rút ngẫu nhiên một thẻ rồi ghi lại số trên thẻ vừa rút sau đó trả lại thẻ vào hộp. An sẽ thắng nếu rút được thẻ ghi số chia hết cho 6, Bình sẽ thắng nếu rút được thẻ ghi số chia hết cho 5. Giả sử An chơi trước, tính xác suất để Bình thắng?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 11 năm 2023 - 2024 trường THPT Đông Sơn 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2023 – 2024 trường THPT Đông Sơn 1, tỉnh Thanh Hóa. Đề thi được biên soạn theo cấu trúc trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án mã đề 001 – 002. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 trường THPT Đông Sơn 1 – Thanh Hóa : + Hằng ngày bạn Hùng đều đón bạn Minh đi học tại một vị trí trên lề đường thẳng đến trường. Minh đứng tại vị trí A cách lề đường một khoảng 50m để chờ Hùng. Khi nhìn thấy Hùng đạp xe đến địa điểm B, cách mình một đoạn 200m thì Minh bắt đầu đi bộ ra lề đường để bắt kịp xe. Vận tốc đi bộ Minh là 5 km h, vận tốc xe đạp của Hùng là 15km h. Hãy xác định vị trí C trên lề đường để hai bạn gặp nhau mà không bạn nào phải chờ người kia (làm tròn kết quả đến hàng phần mười). + Aladin nhặt được cây đèn thần, chàng miết tay vào cây đèn và gọi Thần đèn ra. Thần đèn cho chàng 3 điều ước. Aladin ước 2 điều đầu tiên tùy thích, nhưng điều ước thứ 3 của chàng là: “Ước gì ngày mai tôi lại nhặt được cây đèn và Thần cho tôi số điều ước gấp đôi số điều ước ngày hôm nay”. Thần đèn chấp thuận và mỗi ngày Aladin đều thực hiện theo quy tắc như trên: ước hết các điều đầu tiên và luôn chừa lại điều ước cuối cùng để kéo dài thỏa thuận với thần đèn cho ngày hôm sau. Hỏi sau 10 ngày gặp Thần đèn, Aladin ước tất cả bao nhiêu điều ước? + Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo của quả bóng là một cung Parabol trong mặt phẳng với hệ tọa độ Oth, trong đó t là thời gian (tính bằng giây), kể từ khi quả bóng được đá lên, h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1,2m. Sau đó 1giây, nó đạt độ cao 8,5m và 2 giây sau khi đá nó lên, nó ở độ cao 6m. Sau bao lâu thì quả bóng sẽ chạm đất kể từ khi đá lên (Tính chính xác đến hàng phần trăm)?
Đề thi Olympic 3004 Toán 11 lần 28 năm 2024 trường chuyên Lê Quý Đôn - BR VT
Đề thi Olympic Toán 11 năm 2023 - 2024 cụm Hà Đông Hoài Đức - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic dành cho học sinh môn Toán 11 năm học 2023 – 2024 cụm trường THPT Hà Đông & Hoài Đức, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 cụm Hà Đông & Hoài Đức – Hà Nội : + Cứ vào đầu mỗi tháng, ông A đến gửi tiết kiệm ngân hàng số tiền 10 triệu đồng với lãi suất là 0,5% / tháng theo hình thức lãi kép. Hỏi sau đúng 5 năm thì ông A nhận được số tiền cả gốc và lãi là bao nhiêu, biết rằng trong suốt quá trình gửi, ông A không rút tiền ra và lãi suất của ngân hàng không thay đổi. + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B AB BC a AD a 2. Biết SA vuông góc với đáy ABCD và SA a. 1) Tính sin của góc giữa đường thẳng BD và mặt phẳng SAC 2) Gọi M là một điểm thay đổi trên cạnh CD M (khác C và D). Mặt phẳng qua M và song song với mặt phẳng SBC cắt các cạnh AB SA SD lần lượt tại N P và Q. Chứng minh tứ giác MNPQ là hình thang vuông. 3) Khi M thay đổi, tìm giá trị lớn nhất của diện tích tứ giác MNPQ. + Cho dãy số un xác định bởi 6 n. Tìm số hạng tổng quát n u và tính giới hạn m 4.
Đề thi Olympic Toán 11 năm 2023 - 2024 cụm Hoàn Kiếm Hai Bà Trưng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic môn Toán 11 năm học 2023 – 2024 cụm trường THPT Hoàn Kiếm & Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 11 năm 2023 – 2024 cụm Hoàn Kiếm & Hai Bà Trưng – Hà Nội : + Cho bất phương trình log 2 log 3 1 0 x. 1) Giải bất phương trình đã cho khi m 2. 2) Tìm các giá trị của m để bất phương trình đã cho nghiệm đúng với mọi x thuộc khoảng 23. + Gọi S là tập hợp các số tự nhiên có 7 chữ số sao cho trong mỗi số đó chữ số 0 xuất hiện đúng 3 lần. Chọn ngẫu nhiên một số thuộc S, tính xác suất để số đó chia hết cho 5. + Cho hình chóp S.ABC có cạnh 6 a SB các cạnh còn lại của hình chóp bằng a. Gọi I là trung điểm AC. 1) Chứng minh SI vuông góc với đường thẳng BC. 2) Tính cosin của góc giữa hai đường thẳng AB và SC. 3) Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và tam giác SAC. Một mặt phẳng đi qua G và G’ cắt hai cạnh SA SC lần lượt tại M và N. Khi MN đạt giá trị nhỏ nhất, tính diện tích của tam giác GMN.