Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường Quốc tế Á Châu TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2019 2020 trường Quốc tế Á Châu TP HCM Bản PDF Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 10 năm học 2019 – 2020 trường Quốc tế Á Châu, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 10 năm 2019 – 2020 trường Quốc tế Á Châu – TP HCM : + Cho tam giác ABC có BC = a, AC = b = 2, C = 30. Tính cạnh AB, góc A và diện tích tam giác ABC. + Trong mặt phẳng hệ trục tọa độ Oxy cho điểm A(2;-3), điểm B(1;2) và hai đường thẳng d1 và d2. a) Viết phương trình tổng quát của đường thẳng AB. b) Viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng d1. c) Tìm tọa độ điểm M đối xứng với B qua d2. + Giải các bất phương trình sau.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Hưng Hòa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Hưng Hòa, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Hưng Hòa – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A, B, C. Viết phương trình tham số và phương trình tổng quát đường cao AH của tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A, B, C. Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Giải các bất phương trình sau bằng cách lập bảng xét dấu.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bách Việt - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bách Việt, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bách Việt – TP HCM : + Trong mặt phẳng Oxy cho tam giác ABC có A(8;7), B(-5;3), C(5;-4). a) Viết phương trình tham số và tổng quát của đường thẳng BC. b) Viết phương trình tổng quát đường thẳng đi qua A và vuông góc với BC. c) Viết phương trình đường tròn đường kính AB. d) Tính khoảng cách từ B đến đường thẳng. + Cho đường thẳng và đường tròn. Tìm m để đường thẳng tiếp xúc với đường tròn (C)? + Chứng minh biểu thức sau không phụ thuộc vào biến.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bà Điểm - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bà Điểm, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bà Điểm – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(3;2) và đường thẳng (d). a) Viết phương trình tổng quát của đường thẳng (d’) đi qua A và vuông góc với đường thẳng (d). b) Tìm điểm M thuộc (d) và cách A một khoảng bằng 2. + Trong mặt phẳng với hệ tọa độ Oxy, cho ABC có A(-2;0); B(-1;1); C(2;2). a) Viết phương trình đường tròn (C) ngoại tiếp ABC. b) Viết phương trình tiếp tuyến (d) của (C) tại B. + Cho phương trình (m là tham số). Tìm tất cả các giá trị của tham số m để phương trình có 2 nghiệm x1, x2 thỏa.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT An Nghĩa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Trong mặt phẳng Oxy, cho hai điểm M và N. Viết phương trình đường tròn C có đường kính MN. + Trong mặt phẳng Oxy, cho điểm I(1;2) và đường thẳng d. Viết phương trình đường tròn (C) có tâm I và tiếp xúc với đường thẳng d. + Chứng minh rằng (khi các biểu thức có nghĩa).