Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương giữa học kì 2 Toán 8 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 2 môn Toán 8 năm học 2021 – 2022 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội. A. KIẾN THỨC Phương trình bậc nhất và cách giải. Phương trình đưa về dạng ax + b = 0. Phương trình tích. Phương trình chứa ẩn ở mẫu thức. Giải bài toán bằng cách lập phương trình. Diện tích hình thoi, hình thang, định lí Talet, hệ quả và định lí đảo của định lí Talet. Tính chất đường phân giác trong tam giác. Tam giác đồng dạng. B. BÀI TẬP THAM KHẢO

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trường hợp đồng dạng thứ hai
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ hai, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: + Bước 1: Xét hai tam giác, chọn ra hai góc bằng nhau và chứng minh (nếu cần). + Bước 2: Lập tỉ số các cạnh tạo nên mỗi góc đó, rồi chứng minh chúng bằng nhau. + Bước 3: Từ đó, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ hai (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng còn lại bằng nhau.
Chuyên đề trường hợp đồng dạng thứ nhất
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Để chứng minh hai tam giác đồng dạng, ta lập tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau, từ đó ta được điều phải chứng minh. Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ nhất (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau.
Chuyên đề khái niệm hai tam giác đồng dạng
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề khái niệm hai tam giác đồng dạng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN II. DẠNG BÀI TẬP CƠ BẢN Dạng 1. Vẽ tam giác đồng dạng với tam giác cho trước. Chứng minh hai tam giác đồng dạng. 1. Vẽ tam giác đồng dạng với tam giác cho trước. + Xác định tỉ số đồng dạng. + Kẻ đường thẳng song song với một cạnh của tam giác. 2. Chứng minh hai tam giác đồng dạng. + Sử dụng định nghĩa hoặc định lí nhận biết hai tam giác đồng dạng. Dạng 2: Tính độ dài cạnh, tỉ số đồng dạng thông qua các tam giác đồng dạng. Dạng 3: Chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng.
Chuyên đề tính chất đường phân giác của tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tính chất đường phân giác của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN 1. Định lý: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy. 2. Chú ý: + Định lý vẫn đúng với đối với đường phân giác góc ngoài của tam giác. + Các định lý trên có định lý đảo. II. BÀI TẬP MINH HỌA A. DẠNG BÀI CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng và sử dụng kĩ thuật đại số hóa hình học. + Áp dụng định lí Py-ta-go. DẠNG 2.Tính tỉ số độ dài, tỉ số diện tích hai tam giác. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng. + Sử dụng kĩ thuật đại số hóa hình học. Công thức và kết quả thu được từ công thức tính diện tích tam giác. B. DẠNG BÀI NÂNG CAO