Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường THPT Bình Chiểu TP HCM

Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường THPT Bình Chiểu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2022 – 2023 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán lớp 11 năm 2022 – 2023 trường THPT Bình Chiểu – TP HCM : + Một viên gạch hình vuông có cạnh là 30 cm được thiết kế như hình vẽ. Người ta dựng một cung tròn có tâm là một đỉnh của viên gạch với bán kính 30 cm, sau đó dựng thêm một cung tròn nữa như vậy nhưng có tâm là đỉnh đối diện với đỉnh trên. Em hãy tính diện tích phần giao nhau của hai cung tròn đó. + Bảng giá cước xe taxi Mai Linh loại xe Kia Morning như sau: 10 ngàn đồng cho 0,6 km đầu tiên, 13 ngàn đồng/km cho đoạn tiếp theo nếu quãng đường đi hơn 0,6 km nhưng không quá 25 km và 11 ngàn đồng/km cho đoạn tiếp theo nếu quãng đường đi trên 25 km. a. Hãy thiết lập hàm số f x biểu thị giá tiền (ngàn đồng) phải trả cho x km di chuyển. b. Vẽ đồ thị hàm số f x với 0 x 50. c. Tìm quãng đường đi được nếu số tiền xe là 371 200 đồng. + Một nhóm bạn gồm có 3 thành viên: An, Bình, Chi. Mỗi bạn học giỏi hai trong sáu môn: Toán, Văn, Anh, Lí, Hóa, Sinh. Người ta biết về các bạn trên như sau: Bạn giỏi Văn và bạn giỏi Sinh là hàng xóm của nhau. An trẻ nhất trong 3 bạn. Bạn Bình, bạn giỏi Toán và bạn giỏi Sinh thường đi cùng với nhau trên đường về nhà. Bạn giỏi Toán nhiều tuổi hơn bạn giỏi Anh. Bạn giỏi Hóa, bạn giỏi Anh và bạn An khi rảnh rỗi thường hay đi chơi bóng chuyền với một bạn thứ 4. Em hãy cho biết mỗi bạn giỏi những môn nào và giải thích.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 11 năm học 2019 - 2020 cụm Sóc Sơn - Mê Linh - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán 11 năm học 2019 – 2020 cụm Sóc Sơn – Mê Linh – Hà Nội; đề thi gồm có 01 trang với 08 bài toán dạng tự luận, thời gian làm bài thi 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán 11 năm học 2019 – 2020 cụm Sóc Sơn – Mê Linh – Hà Nội : + Cho hình chóp S.ABC và điểm M tùy ý nằm bên trong tam giác ABC. Ba đường thẳng đi qua M, song song với SA, SB, SC cắt lần lượt các mặt phẳng (SBC), (SAC), (SAB) tại A1, B1, C1. Chứng minh rằng SA/MA1 + SB/MB1 + SC/MC1 ≥ 9. [ads] + Cho tam giác đều ABC cạnh là a. Gọi D là điểm đối xứng với A qua BC. Trên đường thẳng d đi qua D và vuông góc với mặt phẳng (ABC) tại D lấy điểm S sao cho SD = a√6/2. Chứng minh rằng (SAD) ⊥ (SBC) và (SAB) ⊥ (SAC). + Cho hàm số y = f(x) có đồ thị (C) xác định và có đạo hàm trên thỏa mãn f3(1 + x) + 2f(1 + 2x) – 21x – 3 = 0. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1.
Đề thi chọn HSG Toán 11 năm học 2019 - 2020 trường THPT thị xã Quảng Trị
Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 11 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài thi là 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị : + Một tổ gồm 10 học sinh gồm 6 học sinh nam và 4 học sinh nữ trong đó có hai học sinh nữ tên Trang và Thủy. Xếp ngẫu nhiên 10 học sinh trên thành một hàng ngang. Tính xác suất để xếp được một hàng ngang mà hai học sinh nữ Trang và Thủy luôn đứng cạnh nhau, đồng thời các học sinh nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh Trang và Thủy. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC = 30 độ và BC = 2a. Gọi H là hình chiếu vuông góc của A lên BC. Biết hai mặt phẳng (SHA) và (SBC) cùng vuông góc với mặt phẳng (ABC), đồng thời SA tạo với mặt phẳng (ABC) một góc bằng 60 độ. a) Tính góc tạo bởi SA và mặt phẳng (SBC). b) Tính khoảng cách từ B đến mặt phẳng (SAC) theo a. [ads] + Trong mặt phẳng Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên BC, các điểm M, N lần lượt là trung điểm của HB và HC; điểm K là trực tâm tam giác AMN. a) Gọi I là trung điểm của AH. Chứng minh rằng K là trung điểm của IH. b) Tìm tọa độ điểm A; biết M(2;-1), K(-1/2;1/2) và điểm A nằm trên đường thẳng x + 2y + 4 = 0 đồng thời điểm A có tung độ âm.
Đề thi chọn HSG Toán 11 năm 2019 - 2020 trường chuyên Lê Quý Đôn - BR VT
Thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2019 – 2020. Đề thi chọn HSG Toán 11 năm 2019 – 2020 trường THPT chuyên Lê Quý Đôn – BR VT gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 180 phút. Trích dẫn đề thi chọn HSG Toán 11 năm 2019 – 2020 trường chuyên Lê Quý Đôn – BR VT : + Cho tam giác ABC đều, tâm H và có độ dài cạnh là a. Đường thẳng d vuông góc với mặt phẳng (ABC) tại điểm A. Điểm M thay đổi trên đường thẳng d, AM = x (x > 0). Gọi K là trực tâm tam giác MBC. Chứng minh đường thẳng HK vuông góc với mặt phẳng (MBC) và tìm x để khoảng cách từ điểm K đến mặt phẳng (ABC) đạt giá trị lớn nhất. [ads] + Xét hình chóp S.ABC thay đổi sao cho các cạnh SA, SB, SC đôi một vuông góc với nhau. Gọi M, N, P là trung điểm các cạnh BC, CA, AB. Kí hiệu α, β, γ lần lượt là góc tạo bởi mặt phẳng (ABC) với các mặt phẳng (SMN), (SNP), (SPM). Tìm giá trị lớn nhất của biểu thức T = sinα + sinβ + sinγ. + Có một số kiện hàng đã được đóng gói với tổng khối lượng là 3 tấn. Mỗi kiện hàng có khối lượng không quá 500 kilôgam. Chứng minh rằng người ta có thể sử dụng 4 chiếc xe tải, mỗi xe chở không quá 1 tấn để chở tất cả các kiện hàng nói trên.
Đề thi chọn học sinh giỏi Toán 11 năm 2019 - 2020 sở GDĐT Thái Nguyên
Thứ Sáu ngày 29 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh môn Toán 11 năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên : + Cho tam giác ABC có ba góc nhọn (AB < BC < AC) nội tiếp đường tròn (O;R). Vẽ đường tròn tâm O’ lần lượt tiếp xúc với các cạnh BC, AC tại D, E và tiếp xúc trong với đường tròn (O;R) tại T. Đường thẳng TD cắt đường tròn (O;R) tại K (K khác T). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh KC = KB và ba điểm D, I, E thẳng hàng. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng đáy và SA = 2a. Mặt phẳng (P) chứa BC và cắt các cạnh SA, SD lần lượt tại M, N. Góc giữa đường thẳng AC và (P) bằng 30 độ. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. + Cho tập hợp X = {1;2;3;4;…;3^n}. Chứng minh rằng, với mọi số tự nhiên n ≥ 2 luôn tồn tại tập con M của tập hợp X sao cho tập con M có 2n phần tử và không có ba phần tử nào lập thành một cấp số cộng.