Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường tròn ôn thi vào lớp 10

Tài liệu gồm 26 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O). + Đường tròn đi qua các điểm A A … A 1 2 n gọi là đường tròn ngoại tiếp đa giác A A … A 1 2 n. + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A A … A 1 2 n gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp. + Trong tam giác đều tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó. Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó. PHƯƠNG PHÁP: Để chứng minh các điểm A A … A 1 2 n cùng thuộc một đường tròn ta chứng minh các điểm A A … A 1 2 n cách đều điểm O cho trước. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 1. Khi một đường thẳng có hai điểm chung A B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: Nếu M nằm ngoài đoạn AB thì MA MB MO R 2 2; Nếu M nằm trong đoạn AB thì MA MB R MO 2 2. Mối liên hệ khoảng cách và dây cung: 2 2 2 AB R OH 4. 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O). Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm. Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì: + Điểm đó cách đều hai tiếp điểm. + Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến. + Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm. + Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó. 3. Khi một đường thẳng và đường tròn (O) không có điểm chung ta nói đường thẳng và đường tròn (O) không giao nhau. Khi đó OH R. 4. Đường tròn tiếp xúc với 3 cạnh tam giác là đường tròn nội tiếp tam giác. Đường tròn nội tiếp có tâm là giao điểm 3 đường phân giác trong của tam giác. 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác. Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C. Mỗi tam giác có 3 đường tròn bàng tiếp. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN Xét hai đường tròn (O;R) và (O’;R’): A. Hai đường tròn tiếp xúc nhau: Khi hai đường tròn tiếp xúc nhau thì có thể xảy ra 2 khả năng: Hai đường tròn tiếp xúc ngoài; Hai đường tròn tiếp xúc trong. B. Hai đường tròn cắt nhau: Khi hai đường tròn 1 2 O O cắt nhau theo dây AB thì O O AB 1 2 tại trung điểm H của AB. Hay AB là đường trung trực của O O1 2. Khi giải toán liên quan dây cung của đường tròn, hoặc cát tuyến ta cần chú ý kẻ thêm đường phụ là đường vuông góc từ tâm đến các dây cung.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi tuyển sinh vào lớp 10 môn Toán - Trần Quốc Nghĩa
Tài liệu gồm 160 trang với nội dung gồm các phần: Phần 1. BÀI TẬP THEO CHUYÊN ĐỀ + Vấn đề 1. CĂN THỨC + Vấn đề 2. HÀM SỐ VÀ ĐỒ THỊ I. Hàm số bậc nhất II. Hàm số bậc hai III. Sự tương giao giữa parabol (P) và đường thẳng (d) + Vấn đề 3. PHƯƠNG TRÌNH I. Phương trình bậc nhất II. Phương trình bậc hai III. Phương trình trùng phương IV. Phương trình chứa căn thức và trị tuyệt đối V. Phương trình chứa tham số VI. Phương trình chứa ẩn ở mẫu. Phương trình bậc cao [ads] + Vấn đề 4. HỆ PHƯƠNG TRÌNH I. Giải hệ phương trình II. Hệ phương trình chứa tham số + Vấn đề 5. BẤT PHƯƠNG TRÌNH + Vấn đề 6. GIẢI TOÁN BẰNG CÁCH LẬP PT – HPT + Vấn đề 7. HÌNH HỌC I. Hệ thức lượng trong tam giác II. Đường tròn III. Hình trụ – Hình nón – Hình cầu + Vấn đề 8. BÀI TẬP TỔNG HỢP Phần 2. ĐỀ THI BÌNH DƯƠNG Phần 3. ĐỀ THI TPHCM Phần 4. ĐỀ THI CÁC TỈNH NĂM 2015 – 2016
Hướng dẫn giải một số bài toán bất đẳng thức ôn thi vào lớp 10
Tài liệu gồm 9 trang, trình bày lời giải chi tiết các bài toán bất đẳng thức (BĐT) thường gặp trong đề thi tuyển sinh vào lớp 10.
Tài liệu ôn thi vào lớp 10 môn Toán - Vũ Văn Bắc
Tài liệu gồm 42 trang, trình bày các vấn đề sau: + Vấn đề 1. Rút gọn biểu thức có chứa căn + Vấn đề 2. Phương trình bậc hai một ẩn + Vấn đề 3. Hệ phương trình đại số [ads] + Vấn đề 4. Các bài toán về đồ thị hàm số + Vấn đề 5. Giải toán bằng cách lập phương trình + Vấn đề 6. Các bài toán hình học tổng hợp + Vấn đề 7. Một số đề toán luyện thi
8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán
Tài liệu gồm 202 trang, tuyển tập 8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh lớp 9 tham khảo để ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 sắp tới. CHỦ ĐỀ 1 – RÚT GỌN BIỂU THỨC. Dạng 1. Rút gọn biểu thức 1. Dạng 2. Cho giá trị của x tính giá trị của biểu thức 3. Dạng 3. Đưa về giải phương trình 4. Dạng 4. Đưa về giải bất phương trình 10. Dạng 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 16. Dạng 7. Tìm x để P nhận giá trị là số nguyên 24. Dạng 8. Tìm tham số để phương trình P = m có nghiệm 28. CHỦ ĐỀ 2 – HỆ PHƯƠNG TRÌNH. I. HỆ KHÔNG CHỨA THAM SỐ 33. Dạng 1. Hệ đa thức bậc nhất đối với x và y 33. Dạng 2. Hệ chứa phân thức 34. Dạng 3. Hệ chứa căn 36. Dạng 4. Hệ thức chứa trị tuyệt đối 38. II. HỆ CHỨA THAM SỐ 40. CHỦ ĐỀ 3 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH. I. GIẢI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH 45. Dạng 1. Toán chuyển động 45. Dạng 2. Toán năng suất 47. Dạng 3. Toán làm chung công việc 48. Dạng 4. Toán về cấu tạo số 51. Dạng 5. Toán phần trăm 52. Dạng 6. Toán có nội dung hình học 53. II. GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BẬC HAI 55. Dạng 1. Toán chuyển động 55. Dạng 2. Toán năng suất 59. Dạng 3. Toán làm chung công việc 62. Dạng 4. Toán có nội dung hình học 63. CHỦ ĐỀ 4 – PHƯƠNG TRÌNH BẬC HAI VÀ ĐỊNH LÝ VI-ÉT. I. ĐỊNH LÍ VI-ÉT 68. Dạng 1 các nghiệm thỏa mãn một biểu thức đối xứng 68. Dạng 2. Kết hợp định lý Vi-ét để giải các nghiệm 70. Dạng 3. Giải các nghiệm dựa vào ∆ là bình phương 72. Dạng 4. Tính x1^2 theo x1 và x2^2 theo x2 dựa vào phương trình ax2 + bx + c = 0. II. HỆ QUẢ CỦA ĐỊNH LÝ VI-ÉT 77. Dạng 1. Dạng toán có thêm điều kiện phụ 77. Dạng 2. So sánh nghiệm với số 0 và số a 80. Dạng 3. Đặt ẩn phụ 81. III. SỰ TƯƠNG GIAO CỦA ĐƯỜNG THẲNG VÀ PARABOL 83. Dạng 1. Tìm tham số để đường thẳng tiếp xúc parabol, tìm tọa độ tiếp điểm 83. Dạng 2. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức đối xứng đối với xA và xB 84. Dạng 3. Tìm tham số để đường thẳng cắt parabol tại hai điểm phân biệt A, B thỏa mãn một biểu thức không đối xứng đối với xA và xB 87. Dạng 4. Tìm tham số để đường thẳng cắt parapol tại hai điểm phân biệt A, B liên quan đến tung độ A, B 92. Dạng 5. Bài toán liên quan đến độ dài, diện tích 94. CHỦ ĐỀ 5 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI. I. PHƯƠNG TRÌNH KHÔNG CHỨA THAM SỐ 102. Dạng 1. Phương trình bậc ba nhẩm được một nghiệm 102. Dạng 2. Phương trình trùng phương 102. Dạng 3. Phương trình dạng 103. Dạng 4. Phương trình dạng 432 ax bx cx bx a 0 103. Dạng 5. Phương trình giải bằng phương pháp đặt ẩn phụ 104. Dạng 6. Phương trình chứa ẩn ở mẫu 104. II. PHƯƠNG TRÌNH CHỨA THAM SỐ 105. Dạng 1. Phương trình bậc ba đua được về dạng tích (x – α)(ax2 + bx + c) = 0 105. Dạng 2. Phương trình trùng phương 106. CHỦ ĐỀ 6 – ĐƯỜNG TRÒN. Dạng 1. Kết nối các góc bằng nhau thông qua tứ giác nội tiếp 110. Dạng 2. Chứng minh ba điểm thẳng hàng 119. Dạng 3. Tiếp tuyến 121. Dạng 4. Chứng minh điểm thuộc đường tròn, chứng minh đường kính 124. Dạng 5. Sử dụng định lý Ta-lét và định lý Ta-lét đảo 128. Dạng 6. Sử dụng tính chất phân giác 135. CHỦ ĐỀ 7 – BẤT ĐẲNG THỨC. I. BẤT ĐẲNG THỨC CÔSI 149. Dạng 1. Dạng tổng sang tích 149. Dạng 2. Dạng tích sang tổng, nhân bằng số thích hợp 150. Dạng 3. Qua một bước biến đổi rồi sử dụng bất đẳng thức Cô-si 151. Dạng 4. Ghép cặp đôi 154. Dạng 5. Dự đoán kết quả rồi tách thích hợp 154. Dạng 6. Kết hợp đặt ẩn phụ và dự đoán kêt quả 156. Dạng 7. Tìm lại điều kiện của ẩn 160. II. BẤT ĐẲNG THỨC BUNHIA 162. III. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 166. Dạng 1. Đưa về bình phương 166. Dạng 2. Tạo ra bậc hai bằng cách nhân hai bậc một 167. Dạng 3. Tạo ra ab + bc + ca 169. Dạng 4. Sử dụng tính chất trong ba số bất kì luôn tòn tại hai số có tích không âm 170. Dạng 5. Sử dụng tính chất của một số bị chặn từ 0 đến 1 172. Dạng 6. Dự đoán kết quả rồi xét hiệu 174. CHỦ ĐỀ 8 – PHƯƠNG TRÌNH VÔ TỶ. I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 181. Dạng 1. Ghép thích hợp đưa về tích 181. Dạng 2. Nhân liên hợp đưa về tích 182. Dạng 3. Dự đoán nghiệm để từ đó tách thích hợp đưa về tích 185. II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ 191. Dạng 1. Biến đổi về một biểu thức và đặt một ẩn phụ 191. Dạng 2. Biến đổi về hai biểu thức và đặt hai ẩn phụ rồi đưa về tích 193. Dạng 3. Đặt ẩn phụ kết hợp với ẩn ban đầu đưa về tích 195. Dạng 2. Đánh giá vế này ≥ một số, vế kia ≤ số đó bằng BĐT Cô-si, Bunhia 197. III. PHƯƠNG PHÁP ĐÁNH GIÁ 202.