Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Câu hỏi và bài tập trắc nghiệm chuyên đề số phức - Nguyễn Phú Khánh, Huỳnh Đức Khánh

Tài liệu gồm 62 trang phân dạng và tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án và lời giải chi tiết, tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. TỔNG HỢP KIẾN THỨC 1. Khái niệm số phức 2. Hai số phức bằng nhau 3. Biểu diễn hình học số phức 4. Phép cộng và phép trừ số phức 5. Phép nhân số phức 6. Số phức liên hợp 7. Môđun của số phức 8. Chia hai số phức 9. Lũy thừa đơn vị ảo i 10. Phương trình bậc hai với hệ số thực [ads] CÂU HỎI TRẮC NGHIỆM + Vấn đề 1. Phần thực – phần ảo + Vấn đề 2. Hai số phức bằng nhau + Vấn đề 3. Biểu diễn hình học số phức + Vấn đề 4. Phép cộng – phép trừ hai số phức + Vấn đề 5. Nhân hai số phức + Vấn đề 6. Số phức liên hợp + Vấn đề 7. Mô đun của số phức + Vấn đề 8. Phép chia số phức + Vấn đề 9. Lũy thừa đơn vị ảo + Vấn đề 10. Phương với hệ số thực + Vấn đề 11. Tập hợp các điểm biểu diễn số phức + Vấn đề 12. Bài toán min – max trong số phức + Vấn đề 13. Tổng hợp LỜI GIẢI CHI TIẾT

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm phương pháp tọa độ trong không gian Oxyz - Nguyễn Khánh Nguyên
Tài liệu gồm 18 trang tổng hợp 146 câu hỏi trắc nghiệm phương pháp tọa độ trong không gian Oxyz theo các chủ đề: + Chủ đề 1. Hệ tọa độ Oxyz + Chủ đề 2. Phương trình mặt phẳng + Chủ đề 3. Phương trình đường thẳng + Chủ đề 4. Phương trình mặt cầu [ads] Trích dẫn tài liệu : + Cho bốn điểm A (1; -2; 0), B (0; -1; 1), C (2; 1; -1), D (3; 1; 4). Khẳng định nào đúng? A. Bốn điểm A, B, C, D là bốn điểm của một hình vuông B. Bốn điểm A, B, C, D là bốn điểm của một hình chữ nhật C. Bốn điểm A, B, C, D là bốn điểm của một hình thoi D. Bốn điểm A, B, C, D là bốn điểm của một tứ diện + Cho hai điểm A (4; 6; 2), B(2; 2; 0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó. + Xét các điểm A (0; 0; 1), B (m; 0; 0), C (0; n; 0) và D (1; 1; 1) với m > 0, n > 0 và m + n = 1. Biết rằng khi m, n thay đổi, tồn tại một mặt cầu cố định tiếp xúc với mặt phẳng (ABC) và đi qua D. Tính bán kính R của mặt cầu đó?
Hướng dẫn giải một số bài tập tọa độ trong không gian nâng cao - Phạm Minh Tuấn
Tài liệu gồm 22 trang tuyển tập 35 bài toán phương pháp tọa độ trong không gian nâng cao kèm lời giải chi tiết. Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, một mặt phẳng đi qua điểm M (1; 3; 9) và cắt các tia Ox, Oy, Oz lần lượt tại A (a; 0; 0), B (0; b; 0), C (c; 0; 0) với a, b, c là các số thực dương. Tìm giá trị của biểu thức P= a + b + c để thể tích tứ diện OABC đạt giá trị nhỏ nhất. [ads] + Trong không gian với hệ tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có A trùng với gốc của hệ tọa độ. Cho B (a; 0; 0), D (0; a; 0), A’ (0; 0; b) với a, b > 0. Gọi M là trung điểm của cạnh CC’. Xác định tỉ số a/b để hai mặt phẳng (A’BD) và (BDM) vuông góc với nhau. + Trong không gian Oxyz, cho hai điểm A (1; 5; 0), B (3; 3; 6) và đường thẳng d: (x + 1)/2 = (y – 1)/-1 = z/2. Điểm M (a, b, c); thuộc d sao cho ΔMAB có diện tích nhỏ nhất, khi đó a + b + c = ?
Bài tập ôn chương phương pháp tọa độ trong không gian - Võ Thành Lâm
Tài liệu gồm 19 trang tuyển chọn các bài tập ôn chương phương pháp tọa độ trong không gian ôn thi học kỳ 2 Toán 12. 1. Hệ trục tọa độ oxyz – phương trình mặt cầu 2. Phương trình mặt phẳng 3. Phương trình đường thẳng 4. Hình chiếu – đối xứng – góc – khoảng cách 5. Vị trí tương đối [ads]
Bài tập trắc nghiệm ôn tập chương phương pháp tọa độ trong không gian - Nguyễn Tấn Phong
Tài liệu gồm 25 trang với tóm tắt lý thuyết, công thức tính toán và bài tập ôn tập chương phương pháp tọa độ trong không gian. Tọa độ điểm – tọa độ vectơ I. Hệ trục tọa độ oxyz II. Tọa độ vectơ Một số ứng dụng và công thức: 1. Chứng minh 3 điểm a,b,c thẳng hàng; không thẳng hàng 2. D là đỉnh hình bình hành ABCD ⇔ vtAD = vtBC 3. Diện tích hình bình hành ABCD 4. Diện tích tam giác ABC 5. Chứng minh 4 điểm a, b, c, d đồng phẳng, không đồng phẳng 6. Thể tích tứ diện ABCD 7. Thể tích hình hộp ABCD.A’B’C’D’ Khoảng cách 8. Khoảng cách giữa 2 điểm A,B (độ dài đoạn thẳng AB) 9. Khoảng cách từ một điểm đến mặt phẳng 10. Khoảng cách từ điểm đến đường thẳng 11. Khoảng cách giữa 2 đường thẳng chéo nhau [ads] Công thức góc 12. Góc giữa 2 vectơ 13. Góc giữa 2 mặt phẳng 14. Góc giữa 2 đường thẳng 15. Góc giữa đường thẳng; mặt phẳng; phương trình mặt cầu I. Phương trình mặt cầu II. Vị trí tương đối giữa mặt phẳng và mặt cầu Phương trình mặt phẳng 1. Vectơ pháp tuyến 2. Phương trình tổng quát của mặt phẳng 3. Các trường hợp đặc biệt của phương trình mặt phẳng 4. Vị trí tương đối giữa 2 mặt phẳng Phương trình đường thẳng 1. Vectơ chỉ phương 2. Phương trình tham số của đường thẳng 3. Phương trình chính tắc của đường thẳng 4. Vị trí tương đối giữa 2 đường thẳng 4. Vị trí tương đối giữa đường thẳng và mặt phẳng