Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL giữa HK1 Toán 12 năm 2018 - 2019 trường THPT chuyên Đại học Vinh - Nghệ An

Đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT chuyên Đại học Vinh – Nghệ An mã đề 132 được biên soạn nhằm giúp nhà trường và giáo viên đánh giá khả năng của từng học sinh để có phương pháp dạy học phù hợp, đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành đề thi này. Trích dẫn đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT chuyên Đại học Vinh – Nghệ An : + Sinh nhật của An vào ngày 1 tháng 5, Bạn An muốn mua một chiếc máy ảnh giá khoảng 600.000 đồng để làm quà sinh nhật cho chính mình. Bạn ấy quyết định bỏ ống tiết kiệm 10 000 đồng vào ngày 1 tháng 1 của năm đó, sau đó cứ liên tục những ngày sau, mỗi ngày bạn bỏ ống tiết kiện 5 000 đồng. Biết trong năm đó, tháng 1 có 31 ngày, tháng 2 có 28 ngày, tháng 3 có 31 ngày và tháng 4 có 30 ngày. Gọi a (đồng) là số tiền An có được đến sinh nhật của mình (ngày sinh nhật An không bỏ tiền vào ống). Khi đó ta có? [ads] + Trong năm học 2018-2019, Trường THPT Chuyên Đại học Vinh có 13 lớp học sinh khối 10, 12 lớp học sinh khối 11 và 12 lớp học sinh khối 12. Nhân ngày nhà giáo Việt Nam 20 tháng 11 nhà trường chọn ngẫu nhiên 2 lớp trong trường để tham gia hội diễn văn nghệ của Trường Đại học Vinh. Xác suất để 2 lớp được chọn không cùng một khối là? + Một vật chuyển động theo quy luật s = -1/2.t^3 + 9t^2, với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu ?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán đợt 2 cuối năm 2021 2022 sở GD ĐT Nam Định
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán đợt 2 cuối năm 2021 2022 sở GD ĐT Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT đợt 2 cuối năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định, nhằm giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022; đề thi có đáp án mã đề Mã đề 911 Mã đề 913 Mã đề 915 Mã đề 917. Trích dẫn đề khảo sát chất lượng Toán lớp 12 đợt 2 cuối năm 2021 – 2022 sở GD&ĐT Nam Định : + Cho hình chóp S.ABCD có đáy là hình thang ABCD vuông tại A và D; AB = 2AD = 2CD; SA vuông góc với đáy; góc giữa SC và đáy bằng 60°. Biết khoảng cách từ B đến (SCD) bằng a42/7, tính thể tích của khối chóp S.ACD. + Trong không gian Oxyz, cho đường thẳng d, mặt phẳng (P): x + y – 2z + 5 = 0 và điểm A(1;-1;2). Đường thẳng A đi qua A cắt đường thẳng d và mặt phẳng (P) lần lượt tại M, N sao cho AM = 2AN, biết rằng A có một vectơ chỉ phương u = (a;b;-1). Khi đó a – b bằng? + Trong không gian Oxyz, cho mặt cầu (S): x2 + (y – 1)2 + (z + 5)2 = 36 và bốn điểm A(1;2;0), B(3;-1;2), C(1;2;2), D(3;-1;1). Gọi M(a;b;c) là điểm nằm trên mặt cầu (S) sao cho biểu thức T = MA2 + 2MB2 – MC2 – 4MD đạt giá trị nhỏ nhất. Tính a + b + c.
Đề khảo sát chất lượng môn Toán năm 2022 sở GD ĐT Cần Thơ
Nội dung Đề khảo sát chất lượng môn Toán năm 2022 sở GD ĐT Cần Thơ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh lớp 12 môn Toán năm 2022 sở Giáo dục và Đào tạo thành phố Cần Thơ (mã đề 102); nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Trích dẫn đề khảo sát chất lượng lớp 12 môn Toán năm 2022 sở GD&ĐT Cần Thơ : + Cho H là hình phẳng giới hạn bởi đồ thị hàm số 2 y x x4 4 trục tung và trục hoành. Đường thẳng d đi qua điểm A 0 4 và có hệ số góc k k chia hình H thành hai phần có diện tích bằng nhau. Giá trị của k bằng? + Trong không gian Oxyz cho mặt cầu 2 2 2 S x y z 1 1 4 và hai điểm A 1 2 4 B 0 0 1. Mặt phẳng P ax by cz 3 0 a b c đi qua A, B và cắt S theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Giá trị của a b c bằng? + Một hộp chứa 9 quả cầu gồm 4 quả màu xanh, 3 quả màu đỏ và 2 quả màu vàng. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Xác suất để trong 3 quả cầu lấy được có ít nhất 1 quả màu đỏ bằng?
Đề khảo sát chất lượng lớp 12 môn Toán đợt 1 cuối năm 2021 2022 sở GD ĐT Nam Định
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán đợt 1 cuối năm 2021 2022 sở GD ĐT Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT đợt 1 cuối năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định, nhằm giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022; kỳ thi được diễn ra vào thứ Bảy ngày 28 tháng 05 năm 2022; đề thi có đáp án mã đề Mã đề 122 Câu Mã đề 124 Câu Mã đề 126 Câu Mã đề 128. Trích dẫn đề khảo sát chất lượng Toán lớp 12 đợt 1 cuối năm 2021 – 2022 sở GD&ĐT Nam Định : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 4 27. Xét điểm M thuộc mặt phẳng toạ độ Oxy sao cho từ M kẻ được ba tiếp tuyến MA MB MC đến mặt cầu S (trong đó A B C là các tiếp điểm) thỏa mãn 0 AMB 60 0 BMC 90 0 CMA 120. Độ dài đoạn OM lớn nhất bằng bao nhiêu? + Trên tập hợp số phức, xét phương trình 2 z z m 2 3 0 (với m là tham số thực). Gọi hai điểm A và B là hai điểm biểu diễn hai nghiệm của phương trình đã cho. Biết rằng ba điểm O A B là ba đỉnh của một tam giác vuông (với O là gốc toạ độ), khẳng định nào dưới đây đúng? + Cho hàm số f x là hàm số đa thức bậc năm. Biết hàm số y f x có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m để hàm số 3 2 3 2021 2022 f x x m g x có 8 điểm cực trị?
Đề kiểm tra khảo sát lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bình Thuận
Nội dung Đề kiểm tra khảo sát lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Thuận (mã đề 021), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2022 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề kiểm tra khảo sát Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bình Thuận : + Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x3 + 2×2 – 2mx – 1 (m là tham số) và y = x3 + x2 + 3 đạt giá trị nhỏ nhất bằng? + Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AD = 2AB = 2BC và SC vuông góc với mặt phẳng (ABCD). Nếu A(3;0;0), D(0;3;0), S(0;0;3) và C có hoành độ dương thì tung độ của B bằng? + Cho khối trụ (T) có bán kính R và chiều cao h = R2. Gọi A và B là hai điểm lần lượt thuộc hai đường tròn đáy của (T). Nếu góc và khoảng cách giữa đường thẳng AB và trục của (T) lần lượt là 45° và a thì thể tích của (T) bằng?