Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2016 2017 trường THPT Hải An Hải Phòng

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm học 2016 2017 trường THPT Hải An Hải Phòng Bản PDF Đề thi HK2 Toán lớp 10 năm học 2016 – 2017 trường THPT Hải An – Hải Phòng gồm 4 mã đề, mỗi đề gồm 16 câu hỏi trắc nghiệm và 5 bài toán tự luận. Đề thi có đáp án trắc nghiệm và lời giải phần tự luận. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có tâm I (2;1), bán kính R = 2 và điểm M(1;0). Viết phương trình đường thẳng d đi qua điểm M sao cho d cắt (C) tại hai điểm A và B, đồng thời tam giác IAB có diện tích bằng 2. + Tam giác ABC có các góc A, B, C thỏa mãn 5 – cos2A – cos2B – cos2C = 4(sinA.sinB + sinC) là: A. Tam giác đều B. Tam giác vuông nhưng không cân C. Tam giác vuông cân D. Tam giác cân nhưng không vuông

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 10 năm 2018 - 2019 trường THPT Vinh Lộc - TT Huế
Vừa qua, trường THPT Vinh Lộc (huyện Phú Lộc, tỉnh Thừa Thiên Huế) đã tổ chức kỳ thi học kỳ 2 môn Toán 10 năm học 2018 – 2019, nhằm kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối 10 trong học kỳ vừa qua, để làm cơ sở cho công tác đánh giá, xếp loại học lực môn Toán. Đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường THPT Vinh Lộc – TT Huế gồm 4 mã đề A – B – C – D, đề được biên soạn theo hình thức kết hợp giữa trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 8:2, phần trắc nghiệm gồm 40 câu, phần tự luận gồm 2 câu, tổng thời gian học sinh làm bài là 90 phút, đề thi có đáp án phần trắc nghiệm và lời giải chi tiết phần tự luận. [ads] Trích dẫn đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường THPT Vinh Lộc – TT Huế : + Đường thẳng d: 2x – y = 2 chia mặt phẳng tọa độ thành hai miền I, II có bờ là đường thẳng d (hình vẽ bên). Xác định miền nghiệm của bất phương trình 2x – y ≥ 2. A. Nửa mặt phẳng I bỏ đi đường thẳng d. B. Nửa mặt phẳng I kể cả bờ d. C. Nửa mặt phẳng II kể cả bờ d. D. Nửa mặt phẳng II bỏ đi đường thẳng d. + Chọn điểm A(1;0) làm điểm đầu của cung lượng giác trên đường tròn lượng giác. Tìm điểm cuối M của cung lượng giác có số đo 27pi/4. A. M là điểm chính giữa của cung phần tư thứ III. B. M là điểm chính giữa của cung phần tư thứ IV. C. M là điểm chính giữa của cung phần tư thứ I. D. M là điểm chính giữa của cung phần tư thứ II. + Trên ngọn đồi có một cái tháp cao 100m (hình vẽ). Đỉnh tháp B và chân tháp C lần lượt nhìn điểm A ở chân đồi dưới các góc tương ứng bằng 30o và 60o so với phương thẳng đứng. Tính chiều cao AH của ngọn đồi.
Đề thi học kỳ 2 Toán 10 năm 2018 - 2019 trường THPT Nguyễn Du - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Du – TP HCM, đề thi gồm 1 trang với 10 bài toán dạng tự luận, học sinh làm bài thi học kỳ trong khoảng thời gian 90 phút, kỳ thi nhằm giúp nhà trường và giáo viên bộ môn đánh giá chính xác năng lực học tập môn Toán của học sinh khối lớp 10, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Du – TP HCM : + Trong hệ trục tọa độ Oxy, cho đường tròn (C): x^2 + y^2 – 8x + 4y – 5 = 0. a) Xác định tọa độ tâm I và độ dài bán kính R của đường tròn (C). b) Gọi d là đường thẳng vuông góc với đường thẳng Δ: 3x – 4y + 1 = 0 và cắt đường tròn (C) tại hai điểm A và B sao cho độ dài dây cung AB = 8. Viết phương trình đường thẳng d. [ads] + Chứng minh rằng: (cos4a – cos2a)/(sin4a + sin2a) = -tana (với mọi giá trị của a làm cho biểu thức đã cho có nghĩa). + Trong hệ trục tọa độ Oxy, viết phương trình đường thẳng d qua điểm M(-3;4) và song song với đường thẳng Δ: x – y + 2019 = 0.
Đề thi học kì 2 Toán 10 năm 2018 - 2019 trường Nguyễn Thị Minh Khai - TP HCM
Đề thi học kì 2 Toán 10 năm 2018 – 2019 trường Nguyễn Thị Minh Khai – TP HCM được biên soạn theo hình thức tự luận, đề gồm 1 trang với 5 bài toán, học sinh làm bài trong khoảng thời gian 90 phút, kỳ thi nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 10 trong học kỳ vừa qua, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2018 – 2019 trường Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng Oxy: a) Viết phương trình đường thẳng (∆’) qua điểm A(1;2) và song song với đường thẳng (∆): 2x + y − 1 = 0. b) Cho đường tròn (C): x^2 + y^2 = 4 và điểm I(1;1). Tìm điểm M thuộc (C) sao cho góc (OM;IM) đạt giá trị lớn nhất. [ads] + Trong mặt phẳng Oxy, viết phương trình đường tròn (C) đi qua ba điểm M(1;2); N(3;1); P(3;2). + Trong mặt phẳng Oxy, tìm tọa độ hai tiêu điểm và tính tâm sai của elip?
Đề thi HK2 Toán 10 năm 2018 - 2019 trường chuyên Hạ Long - Quảng Ninh
Nhằm kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối lớp 10 trong giai đoạn học kỳ 2 năm học 2018 – 2019, vừa qua, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh đã tổ chức kỳ thi học kỳ 2 Toán 10 năm học 2018 – 2019. Đề thi HK2 Toán 10 năm 2018 – 2019 trường chuyên Hạ Long – Quảng Ninh có mã đề 101, đề được biên soạn theo dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài thi học kỳ trong vòng 90 phút. Trích dẫn đề thi HK2 Toán 10 năm 2018 – 2019 trường chuyên Hạ Long – Quảng Ninh : + Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kg thịt lợn chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kg cá chứa 600 đơn vị protetin và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua tối đa 1,6 kg thịt lợn và 1,1kg thịt cá. Giá tiền 1kg thịt lợn là 45 nghìn đồng, 1kg thịt cá là 35 nghìn đồng. Hỏi gia đình đó phải mua bao nhiêu kg mỗi loại để số tiền bỏ ra là ít nhất. A. 0,6 kg thịt lợn và 0,7 kg cá. B. 0,3kg thịt lợn và 1,1kg cá. C. 0,6 kg cá và 0,7 kg thịt lợn. D. 1,6 kg thịt lợn và 1,1kg cá. [ads] + Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h = 1,2 m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc DA1C1 = 49 độ và DB1C1 = 35 độ. Chiều cao CD của tháp gần với kết quả nào nhất. + Lục giác đều ABCDEF nội tiếp đường tròn lượng giác có gốc là A, các đỉnh lấy theo thứ tự đó và các điểm B, C có tung độ dương. Khi đó góc lượng giác có tia đầu OA, tia cuối OC bằng?