Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT Cần Thơ

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 22 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Hai đường cao BE, CF cắt nhau tại trực tâm H. Gọi M là trung điểm của BC. Đường thẳng AM và AH cắt đường tròn (O) lần lượt tại các điểm L, K (L, K khác A). Đường tròn đường kính AH cắt đường tròn (O) tại điểm T (T khác A). 4.1. Hai tiếp tuyến tại T và tại K của đường tròn (O) cắt nhau tại điểm J. Chứng minh rằng J thuộc đường thẳng BC và J là tâm đường tròn ngoại tiếp tam giác HKT. 4.2. Gọi P là giao điểm của EF và BC, X là giao điểm của HP và KL. Chứng minh rằng hai đường tròn ngoại tiếp tam giác HTX và tam giác TML tiếp xúc nhau. + Tìm tất cả các bộ (p, q, r, n) với p, q, r là các số nguyên tố và n là số tự nhiên sao cho p2 = q2 + rn. + Cho tập hợp S = {1; 2; 3; …; 2024}. Gọi A là tập con gồm k phần tử của tập S sao cho trong A luôn tồn tại ba phần tử x, y, z thỏa x = a + b, y = b + c, z = c + a với a, b, c là các phần tử đôi một khác nhau thuộc S. Tìm giá trị nhỏ nhất của k.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG lớp 12 cấp trường năm học 2017 - 2018 môn Toán trường Trần Hưng Đạo - Vĩnh Phúc
Đề thi chọn HSG lớp 12 cấp trường năm học 2017 – 2018 môn Toán trường THPT Trần Hưng Đạo – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có A(5, -7), điểm C thuộc đường thẳng có phương trình (d1): x – y + 4 = 0. Đường thẳng đi qua D và trung điểm của đoạn AB có phương trình (d2): 3x – 4y – 23 = 0. Tìm tọa độ của B và C, biết điểm B có hoành độ dương. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc BAD = 60 độ, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với điểm G là trọng tâm tam giác BCD. Góc giữa SA và mặt phẳng (ABCD) bằng 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng DC và SA theo a. + Cho A là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lập được từ các chữ số 0, 2, 3, 5, 6, 8. Lấy ngẫu nhiên một số thuộc tập A. Tính xác suất để số lấy được có chữ số 0 và chữ số 5 không đứng cạnh nhau.
Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cao Bằng
Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cao Bằng gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một trường trung học phổ thông có 12 học sinh giỏi gồm ba học sinh khối 10, bốn học sinh khối 11 và năm học sinh khối 12. Chọn sáu học sinh trong số học sinh giỏi đó, tính xác suất sao cho cả ba khối đều có học sinh được chọn. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60 độ. [ads] a. Tính thể tích khối chóp S.ABCD b. Tính khoảng cách từ điểm D đến mặt phẳng (SBC) + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm M (-3; 0) là trung điểm của cạnh AB, điểm H(0; -1) là hình chiếu vuông góc của B trên AD và điểm G(4/3; 3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B, D.
Đề thi học sinh giỏi môn Toán 12 năm học 2017 - 2018 trường THPT Đan Phượng - Hà Nội
Đề thi học sinh giỏi môn Toán 12 năm học 2017 – 2018 trường THPT Đan Phượng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (x – 1)/2(x + 1) (C). Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo với hai trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. [ads] + Cho hàm số y = x^3 – 3(m+1)x – 2 với m là tham số. Tìm các giá trị của m để đồ thị hàm số cắt trục Ox tại một điểm. + Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác ABC sao cho CD = CA. M là một điểm trên cạnh AB sao cho góc BDM = 1/2.ACD, N là giao điểm của MD và đường cao AH của tam giác ABC. Chứng minh DM = DN. + Cho tam giác ABC cân tại A có AB = AC = a, góc BAC = 120 độ. Điểm S thay đổi trong không gian nhưng luôn nằm về 1 phía của mặt phẳng (ABC) và AS = a, góc SAB = 60 độ. Gọi H là hình chiếu của S trên mặt phẳng (ABC). a) Chứng minh rằng H thuộc đường thẳng cố định. b) Chứng minh rằng khi độ dài SH lớn nhất thì hai mặt phẳng (SAB) và (ABC) vuông góc với nhau và khi đó tính độ dài SC.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.