Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Tin)

Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Tin) Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Tin) năm học 2017-2018 Đề thi tuyển sinh môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Tin) năm học 2017-2018 Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Tin) bao gồm 5 bài toán tự luận. Bài toán đầu tiên trong đề đề cập đến đường tròn và các điểm nằm trên đường tròn. Cụ thể, ta có đường tròn (O; R) có đường kính AB, và điểm M thuộc đoạn AB. Khi vẽ đường thẳng (d) vuông góc với AB qua M, ta còn xác định được các tiếp tuyến CE, CF với đường tròn (O), với E, F là tiếp điểm. Tiếp theo, đề bài yêu cầu chứng minh rằng các điểm C, M, E, F, O đều nằm trên cùng một đường tròn. Bài toán tiếp theo đề cập đến ba điểm E, F, I thẳng hàng. Cần chứng minh rằng các điểm này thực sự thẳng hàng. Cuối cùng, đề bài yêu cầu xác định vị trí của điểm C để tâm đường tròn ngoại tiếp tam giác ABC nằm trên đường thẳng EF. Đây là một bài toán không chỉ yêu cầu kiến thức vững chắc mà còn đòi hỏi trí tưởng tượng và khả năng tinh tế trong suy luận. Để giải quyết bài toán này, thí sinh cần phải có sự logic, khéo léo và kiên nhẫn. Chắc chắn đây sẽ là một thử thách đáng giá đối với những ai yêu thích môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Hạ Long Quảng Ninh
Nội dung Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Hạ Long Quảng Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long, Quảng Ninh Đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long, Quảng Ninh Chào đón quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Các bài toán trong đề thi đều được chọn lọc kỹ lưỡng để đảm bảo tính chất chuyên sâu và đòi hỏi của môn Toán chuyên. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022-2023 trường chuyên Hạ Long - Quảng Ninh: 1. Chứng minh rằng với x là số nguyên bất kỳ thì 25x + 1 không thể viết được dưới dạng tích hai số nguyên liên tiếp. 2. Cho tam giác ABC có ba góc nhọn, đường cao AH. Đường tròn (O) đường kính BC cắt AB tại E (E khác B). Gọi D là một điểm trên cung nhỏ BE (D khác B và D khác E). Hai đường thẳng DC và AH cắt nhau tại G, đường thẳng EG cắt đường tròn (O) tại M (M khác E), hai đường thẳng AH và BM cắt nhau tại I, đường thẳng CI cắt đường tròn (O) tại P (P khác). a) Chứng minh tứ giác DGIP nội tiếp; b) Chứng minh GA.GI = GE.GM; c) Hai đường thẳng AD và BC cắt nhau tại N, DB và CP cắt nhau tại K. Chứng minh hai đường thẳng NK và AH song song với nhau. 3. Chứng minh rằng trong 16 số nguyên dương đôi một khác nhau nhỏ hơn 23, bao giờ cũng tìm được hai số khác nhau có tích là số chính phương. Hy vọng đề thi này sẽ giúp các em học sinh thử sức và phát huy tốt năng lực Toán học của mình. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022-2023 của trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Đề thi bao gồm 5 câu tự luận, thời gian làm bài 120 phút (không tính thời gian giao đề). Kỳ thi sẽ diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM: Cho các phương trình $x^2 - 2ax + 3a = 0$ (1) và $x^2 - 4x + a = 0$ (2), với a là tham số. a) Chứng minh rằng ít nhất một trong hai phương trình trên có nghiệm. b) Giả sử cả hai phương trình trên đều có hai nghiệm phân biệt. Gọi T1 và T2 lần lượt là tổng bình phương các nghiệm của (1) và (2). Chứng minh T1 + 5T2 > 68. Cho phương trình $2^x + 5^y = k$ (x, y, k là các số nguyên dương). a) Chứng minh rằng với mọi k, phương trình không có nghiệm (x;y) với y chẵn. b) Tìm k để phương trình có nghiệm. Cho tam giác ABC nhọn có H là trực tâm. Lấy D đối xứng với H qua A. Gọi I là trung điểm CD, đường tròn (I) đường kính CD cắt AB tại các điểm E, F (E thuộc tia AB). a) Chứng minh ECD = FCH và AE = AF. b) Chứng minh H là trực tâm của tam giác CEF. c) Gọi K là giao điểm BH và AC. Chứng minh tứ giác EFKH nội tiếp và EF là tiếp tuyến chung của các đường tròn ngoại tiếp các tam giác CKE và CKF. d) Chứng minh rằng tiếp tuyến tại C của (I) và tiếp tuyến tại K của đường tròn ngoại tiếp tam giác KEF cắt nhau trên đường thẳng AB. Hy vọng rằng đề thi sẽ giúp quý thầy cô và các em học sinh lớp 9 chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc tất cả các em đạt kết quả cao trong kỳ thi!
Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 trường PTNK TP HCM Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 trường PTNK TP HCM Xin chào quý thầy cô và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2022 – 2023 của trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Đề thi bao gồm 10 câu trắc nghiệm (mỗi câu 2 điểm) và 4 câu tự luận (mỗi câu 8 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Để trả lời các câu hỏi trắc nghiệm, học sinh cần ghi 01 ký tự A, B, C hoặc D vào ô trả lời tương ứng với đáp án, và bỏ câu trả lời bằng cách gạch chéo ký tự đã ghi và chọn lại đáp án đúng. Ví dụ trong đề thi có một bài toán về hình vuông ABCD và hình chữ nhật MNPQ, với tổng chu vi là 42 cm và tổng diện tích là 55 cm2. Biết rằng AB = MN, học sinh cần tính độ dài AC khi chiều rộng của hình chữ nhật là MN. Ngoài ra, đề thi còn đưa ra một bài toán khác liên quan đến Sẻ Project - dự án thiện nguyện của trường PTNK, ĐHQG TP. HCM. Học sinh sẽ được yêu cầu tính số tiền góp của Sẻ vào các năm 2019, 2020, 2021 và tìm ra số tiền góp trong năm 2020 dựa trên đã biết. Mong rằng đề thi sẽ giúp các em thí sinh thử sức và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em đạt kết quả tốt trong bài thi của mình!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Hà Tĩnh Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Hà Tĩnh Xin chào quý thầy cô giáo và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến quý vị bộ đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh. Kỳ thi được tổ chức vào thứ Hai, ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Hà Tĩnh: - Đề bài 1: Hưởng ứng “Ngày sách và Văn hóa đọc Việt Nam năm 2022”, một nhà sách đã có chương trình giảm giá cho tất cả các loại sách. Hãy giúp bạn Nam tính giá trên mỗi quyển sách tham khảo môn Toán và môn Ngữ văn. - Đề bài 2: Giải bài toán về tam giác ABC vuông tại A, đường cao AH (H thuộc BC) và sinh ABC = 4/5. Tính độ dài các đoạn AC và BH. - Đề bài 3: Xét tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AH (H thuộc BC) và vẽ HM vuông góc AB, HN vuông góc AC. a) Chứng minh AMHN là tứ giác nội tiếp. b) Chứng minh OA vuông góc MN và AD = AH. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô giáo và các em học sinh có những giờ học hiệu quả và đạt kết quả cao trong kỳ thi!