Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nguyên hàm, tích phân và ứng dụng mức độ vận dụng và vận dụng cao có đáp án

Tài liệu gồm 103 trang, tuyển chọn các câu hỏi và bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng mức độ vận dụng và vận dụng cao có đáp án, giúp học sinh lớp 12 rèn luyện nâng cao khi học chương trình Toán 12 phần Giải tích chương 3 và ôn luyện điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán, kỳ thi tuyển sinh vào các trường Đại học, Cao đẳng. MỤC LỤC : Chương 3. Nguyên Hàm – Tích Phân 1. Bảng đáp án 8. Bảng đáp án 13. §1 – Nguyên hàm và tích phân của hàm số f(x) và f0(x) 13. Dạng 1. Dạng tích liên quan đến f(x) và f0(x) 13. Dạng 2. Dạng tổng liên quan đến f(x) và f0(x) 13. Bảng đáp án 17. §2 – Nguyên Hàm 2.2 18. Bảng đáp án 23. §3 – Công thức tính nhanh diện tích hình phẳng 23 . A Các công thức tính nhanh 23 . B Bài tập 29. Bảng đáp án 34. Bảng đáp án 41. Bảng đáp án 45. §4 – Giá trị lớn nhất và giá trị nhỏ nhất của tích phân 45. Bảng đáp án 49. §5 – Tính diện tích hình phẳng dựa trên đồ thị hàm số phần 1 50. Bảng đáp án 61. §6 – Tính diện tích hình phẳng dựa trên đồ thị hàm số phần 2 61. Bảng đáp án 68. §7 – Ứng dụng tích phân tính diện tích hình phẳng phần 1 68. Bảng đáp án 82. §8 – Ứng dụng tích phân tính diện tích hình phẳng phần 2 82. Bảng đáp án 92. §9 – Bài toán thực tế diện tích hình phẳng 92. Bảng đáp án 100.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm các công thức cơ bản về tích phân
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề các công thức cơ bản về tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. 1. Khái niệm hình thang cong. 2. Tích phân là gì? II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm của hàm lượng giác
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm của hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT 1. Một số công thức lượng giác cần nhớ. 2. Một số nguyên hàm lượng giác cơ bản. 3. Các dạng nguyên hàm lượng giác thường gặp. + Dạng 1: Nguyên hàm m n I sin x cos x dx. + Dạng 2: Nguyên hàm m n dx I sin x cos x. + Dạng 3: Nguyên hàm lượng giác của hàm tanx và cotx. + Dạng 4: Nguyên hàm sử dụng công thức biến đổi tích thành tổng. + Dạng 5: Nguyên hàm dx I a sin x b cos x c. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm của hàm hữu tỉ
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm của hàm hữu tỉ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT I. Các công thức cần nhớ. II. Nguyên hàm dạng P x dx I Q x. + Dạng 1: P x dx I ax b. + Dạng 2: 2 mx n I dx ax bx c. + Dạng 3: P x dx I Q x với 3 2 Q x ax bx cx d. + Dạng 4: Tham khảo và nâng cao: 4 2 P x dx I x a trong đó bậc của P(x) nhỏ hơn 4. + Dạng 5: Tham khảo và nâng cao: Một số nguyên hàm hữu tỷ khi Q(x) là đa thức bậc 6. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm từng phần
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm từng phần, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT TRỌNG TÂM Một số dạng nguyên hàm từng phần thường gặp: + Dạng 1: I P x mx n dx ln trong đó P x là đa thức. Theo quy tắc ta đặt ln u mx n dv P x dx. + Dạng 2: sin cos x I P x dx x trong đó P x là đa thức. Theo quy tắc ta đặt sin cos u Px x dv dx x. + Dạng 3: ax b I P x e dx trong đó P x là đa thức. Theo quy tắc ta đặt ax b u Px dv a dx. + Dạng 4: sin cos x x I e dx x. Theo quy tắc ta đặt sin cos x x u x dv e dx. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.