Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Đồng Tháp

Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Đồng Tháp Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; đề thi được biên soạn theo hình thức đề thi 100% trắc nghiệm, đề thi có đáp án và tóm tắt lời giải (lưu ý: đây là mã đề GỐC nên toàn bộ đáp án đều là A). Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Đồng Tháp : + Từ một tấm tôn hình quạt OAB có 2 120 o OA AOB người ta xác định hai điểm M N lần lượt là trung điểm của OA OB rồi cắt tấm tôn theo hình chữ nhật MNPQ (như hình vẽ). Dùng hình chữ nhật đó tạo thành mặt xung quanh của một hình trụ với đường sinh MQ NP trùng khít nhau. Khối trụ tương ứng được tạo thành có thể tích là? + Trong không gian với hệ tọa độ Oxyz, cho a(1;-1;0) và hai điểm A(−4;7;3), B(4;4;5). Hai điểm M N thay đổi thuộc mặt phẳng Oxy sao cho MN cùng hướng a và MN = 5√2. Giá trị lớn nhất của |AM – BN| bằng? + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;2), B(-1;0;4), C(0;-1;3) và điểm M thuộc mặt cầu (S): x2 + y2 + (z – 1)2 = 1. Nếu biểu thức MA2 + MB2 + MC2 đạt giá trị nhỏ nhất thì độ đài đoạn AM bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Ninh Bình
Nội dung Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Ninh Bình Bản PDF Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút; kỳ thi diễn ra vào ngày 28 tháng 10 năm 2020. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Tìm tất cả các cặp số nguyên tố (p;q) sao cho p^2 + 3pq + q^2 là một số chính phương. + Cho đường tròn (O;R) tiếp xúc với đường thẳng d tại điểm T cho trước. Một điểm M di động trên (O), tiếp tuyến của (O) tại M cắt d tại P. Gọi (C) là đường tròn tâm J đi qua M và tiếp xúc với d tại P và I là điểm đối xứng với P qua J. 1. Chứng minh OI = IP và (C) tiếp xúc với một đường tròn cố định. 2. Tìm quỹ tích tâm J của đường tròn (C) khi M di động trên (O). + Trong mặt phẳng cho n điểm phân biệt và m đường thẳng phân biệt. Gọi k là số bộ (A;a) sao cho A thuộc a với A là một trong các điểm đã cho và a là một trong các đường thẳng đã cho. 1. Tìm giá trị lớn nhất của k với n = 6 và m = 5. 2. Với n = 66 và m = 16, chứng minh k =< 159.
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Hưng Yên
Nội dung Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Hưng Yên Bản PDF Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Hưng Yên gồm 02 bài thi; bài thi thứ nhất gồm 04 bài toán, thời gian làm bài 180 phút; bài thi thứ hai gồm 03 bài toán, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 09 và 10 tháng 09 năm 2020.
Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Bình Định Bản PDF Thứ Hai ngày 09 tháng 11 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi lập đội tuyển tham dự kỳ thi học sinh giỏi Toán cấp Quốc gia năm học 2020 – 2021. Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho tam giác nhọn ABC không cân và nội tiếp đường tròn (O). Trong tam giác ABC lấy điểm P sao cho AP vuông góc với BC. Kẻ PE, PF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm thứ hai là G (khác điểm A). Chứng minh rằng ba đường thẳng GP, BF, CE đồng quy tại một điểm. + Cho đường tròn tâm O và tam giác nhọn ABC nội tiếp đường tròn (O) có trực tâm H, trong đó AB < BC. Trên tia BO kéo dài lấy điểm D sao cho ADC = ABC. Một đường thẳng đi qua điểm H song song với đường thẳng BC cắt cung nhỏ AC tại điểm E. Chứng minh rằng BH = DE. + Cho n là số nguyên dương không nhỏ hơn 3 và các điểm A1, A2 … An cùng nằm trên một đường tròn. Có tối đa bao nhiêu tam giác nhọn có đỉnh là ba điểm trong số các điểm trên.
Đề chọn đội tuyển HSG lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Quảng Trị
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Quảng Trị Bản PDF Ngày … tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn đội tuyển học sinh giỏi văn hóa lớp 12 THPT dự thi Quốc gia môn Toán năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm hai vòng thi: đề thi vòng 1 gồm 04 câu, đề thi vòng 2 gồm 03 câu. Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Một bảng n x n (n >= 2) được chia thành các hình vuông đơn vị. Mỗi hình vuông đơn vị đó được tô màu đỏ hoặc màu xanh. Hỏi có bao nhiêu cách tô màu sao cho mỗi hình vuông 2 x 2 có đúng hai hình vuông được tô màu đỏ và hai hình vuông được tô màu xanh? + Cho tam giác ABC cân tại A. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho ED = EC. Gọi M là trung điểm DB, N là giao điểm của EM và BC. Chứng minh rằng góc DNB = góc DCA. + Cho tam giác ABC nhọn, không cân, nội tiếp (O). Các tiếp tuyến của (O) tại B và C cắt nhau tại D. Gọi M là trung điểm của BC, E là giao điểm của đường thẳng AC và BC, F (F khác A) là giao điểm thứ hai của (O) và đường tròn ngoại tiếp tam giác AME, N (N khác A) là giao điểm thứ hai của đường thẳng AM và (O). Chứng minh rằng đường thẳng FN đi qua trung điểm của MD.