Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Trường Sơn - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Trường Sơn, huyện An Lão, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Trường Sơn – Hải Phòng : + Nhiệt độ ở mặt đất đo được khoảng 300 C. Biết rằng cứ lên 1km thì nhiệt độ giảm đi 50. a) Hãy lập hàm số T theo h, trong đó T là nhiệt độ khi ở độ cao h(km) so với mặt đất (tính bằng (0C)) và h tính bằng ki-lô-mét (km). b) Nếu đo được nhiệt độ tại vị trí đó là 150 C thì vị trí đó cách mặt đất là bao nhiêu km? + Bài toán thực tế: Buổi họp tổng kết năm học 2022-2023 của trường THCS A dự kiến có 120 người dự họp, nhưng khi họp có 160 người tham dự nên phải kê thêm 2 dãy ghế và mỗi dãy phải kê thêm một ghế nữa thì vừa đủ. Tính số dãy ghế dự định lúc đầu. Biết rằng số dãy ghế lúc đầu trong phòng nhiều hơn 20 dãy ghế và số ghế trên mỗi dãy ghế là bằng nhau. + Cho tam giác ABC nhọn (AB AC) nội tiếp đường tròn O các đường cao AD BE và CF cắt nhau tại H. Gọi giao điểm của AD với (O) là I (I khác A). a) Chứng minh bốn điểm B F E C cùng thuộc một đường tròn. Xác định tâm M của đường tròn này. b) Tia IE cắt đường tròn (O) tại J (J khác I), BJ cắt EF tại K, vẽ EL vuông góc với AB tại L. Chứng minh F B BJI E và BL BA BK BJ. c) Gọi N là trung điểm của đoạn thẳng AH. Chứng minh ba điểm N, K, M thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Phú Thượng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Phú Thượng, quận Tây Hồ, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Phú Thượng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô chạy xuôi dòng 63km và ngược dòng 30 km hết tất cả 5 giờ. Nếu cũng trên khúc sông đó, ca nô chạy xuôi dòng 42 km và ngược dòng 45 km hết tất cả 5 giờ. Tính vận tốc thực của ca nô và vận tốc của dòng nước. + Một con thuyền ở địa điểm D di chuyển từ bờ sông a sang bờ sông b với vận tốc trung bình là 2 km/h, vượt qua khúc sông nước chảy mạnh trong 20 phút. Biết đường đi con thuyền là DE, tạo với bờ sông một góc 60o. Tính chiều rộng khúc sông. + Cho đường tròn (O, R), BC là dây không đi qua tâm. Các tiếp tuyến của đường tròn tâm O tại B và C cắt nhau ở điểm A. Lấy M thuộc cung nhỏ BC. Kẻ MI, MK, MH lần lượt vuông góc với BC, AB, AC. Chứng minh rằng: a. Tứ giác BIMK nội tiếp đường tròn. b. Chứng minh MH.MK = MI2. c. Gọi BM cắt KI tại E, CM cắt IH tại F. Chứng minh: FE // BC và FE là tiếp tuyến của đường tròn ngoại tiếp tam giác MHF.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Đống Đa, quận Đống Đa, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Đống Đa – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ sản xuất phải làm tổng cộng 330 sản phẩm trong một thời gian nhất định. Thực tế, tổ I đã sản xuất vượt mức kế hoạch là 10% và tổ II làm giảm 15% so với kế hoạch nên cả hai tổ làm được 318 sản phẩm. Hỏi số sản phẩm được giao theo kế hoạch của mỗi tổ là bao nhiêu? + Cho đường tròn (O) và điểm A cố định nằm ngoài đường tròn. Đường thẳng d thay đổi đi qua A cắt đường tròn (O) tại hai điểm M và N (AM < AN, MN không là đường kính). Kẻ tiếp tuyến AB tới đường tròn (O) (B là tiếp điểm, B nằm trên cung lớn MN). Gọi E là trung điểm của MN. a) Chứng minh: Tứ giác ABOE là tứ giác nội tiếp. b) Chứng minh: Tam giác AMB đồng dạng với tam giác ABN và AM.AN = AB2. c) Lấy F là một điểm trên đoạn BE sao cho BF = 2EF. Chứng minh F luôn thuộc một đường tròn cố định khi đường thẳng d thay đổi và thỏa mãn điều kiện đề bài. + Trên mặt phẳng tọa độ cho parabol (P): y = -x2 và đường thẳng (d): y = 3x + m – 2. a) Điểm A(-2;4) có nằm trên parabol (P) không? Vì sao? b) Khi m = -2, tìm tọa độ giao điểm của parabol (P) và đường thẳng (d) bằng phương pháp đại số.
Đề giữa kỳ 2 Toán 9 năm 2023 - 2024 trường THTHCS Trường Thành - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường TH&THCS Trường Thành, huyện An Lão, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa kỳ 2 Toán 9 năm 2023 – 2024 trường TH&THCS Trường Thành – Hải Phòng : + Một du khách đi trên ô tô 4 giờ, sau đó đi tiếp bằng tàu hỏa trong 7 giờ được quãng đường dài 640km. Hỏi vận tốc tàu hỏa và ô tô biết rằng tàu hỏa đi nhanh hơn ô tô là 5km/h. + Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tuỳ ý trên cung CB (D khác C và B). Các tia AC, AD cắt tia Bx theo thứ tự ở E và F. a) Chứng minh: ∆ABE vuông cân. b) Chứng minh: FB.AD = AB.BD c) Chứng minh: 0 180 CDF CEF. + Số đo của góc có đỉnh ở bên ngoài đường tròn bằng A. nửa số đo cung bị chắn B. số đo cung bị chắn C. nửa tổng số đo hai cung bị chắn D. nửa hiệu số đo hai cung bị chắn.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Cầu Giấy, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một tổ sản xuất phải làm 600 sản phẩm trong thời gian quy định. Khi làm xong 400 sản phẩm, tổ sản xuất đã tăng năng suất lao động mỗi ngày thêm 10 sản phẩm so với quy định. Vì vậy công việc được hoàn thành sớm hơn quy định 1 ngày. Hỏi lúc đầu mỗi ngày tổ sản xuất quy định làm được bao nhiêu sản phẩm? + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = -x + 2 và parabol (P): y = x2. a) Vẽ đồ thị hàm số của (d) và (P) trên cùng hệ tọa độ Oxy. b) Tìm tọa độ giao điểm A, B của (d) và (P). Tính diện tích tam giác OAB. + Cho đường tròn (O;R) và một điểm C nằm ngoài đường tròn. Qua C kẻ hai tiếp tuyến CM và CN với đường tròn (M, N là tiếp điểm). Kẻ cát tuyến CAB không đi qua tâm O (A nằm giữa B và C, tia CO nằm giữa tia CM và tia CB). Gọi I là trung điểm của AB. a) Chứng minh OICM là tứ giác nội tiếp và 5 điểm O, M, C, N, I cùng thuộc một đường tròn. b) Chứng minh CA.CB = CM2. c) Cho OC = 2R. Tính số đo góc MIN. d) Đường thẳng qua A song song với CM cắt MN tại E. Chứng minh IE // BM.