Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy

Khối chóp có một cạnh bên vuông góc với đáy là dạng giả thiết được sử dụng rất nhiều trong các bài toán tính thể tích khối chóp, bởi nhờ vào giả thiết này, chúng ta sẽ xác định được ngay đường cao của khối chóp, đồng thời dựa vào định lý Py-ta-go, các hệ thức lượng trong tam giác vuông … sẽ tính được các yếu tố khác của khối chóp. Nhằm giúp các em học sinh rèn luyện giải toán liên quan đến dạng hình này, giới thiệu đề bài và lời giải chi tiết 97 bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy, với nhiều biến dạng và độ khó khác nhau, đây là các dạng bài thường gặp trong chương trình Hình học 12 và trong các đề thi THPT Quốc gia môn Toán. [ads] Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy: + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh SA vuông góc với đáy và SA = y. Trên cạnh AD lấy điểm M sao cho AM = x. Biết rằng x^2 + y^2 = a^2. Tìm giá trị lớn nhất của thể tích khối chóp S.ABCM. + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy (ABCD), đáy ABCD là hình thang vuông tại A và B có AB = a, AD = 3a, BC = a. Biết SA = a√3, tính thể tích khối chóp S.BCD theo a. + Cho khối tứ diện OABC với OA, OB, OC vuông góc từng đôi một và OA = a, OB = 2a, OC = 3a. Gọi M, N lần lượt là trung điểm của hai cạnh AC, BC. Thể tích của khối tứ diện OCMN tính theo a bằng? + Cho khối chóp S.ABC có đáy ABC là tam giác vuông cân có cạnh huyền BC = a và SA vuông góc với mặt phẳng đáy. Biết góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 45°. Thể tích của hình chóp S.ABC là? + Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài là a. Thể tích khối tứ diện S.BCD bằng?

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập cơ bản về Số phức - Đặng Việt Hùng
Tài liệu các dạng bài tập cơ bản về Số phức được biên soạn bởi thầy Đặng Việt Hùng gồm 28 trang tóm tắt lý thuyết, công thức tính và các bài toán số phức có lời giải chi tiết. Thông qua tài liệu, học sinh có thể nắm được phương pháp giải các bài toán số phức cơ bản thường bắt gặp trong chương trình Giải tích 12 chương 4. Khái quát nội dung tài liệu các dạng bài tập cơ bản về Số phức – Đặng Việt Hùng: BÀI 1 . MỞ ĐẦU VỀ SỐ PHỨC Phần 1. Khái niệm số phức. Một số phức z là một biểu thức dạng z = a + bi, trong đó a, b là những số thực và số i thỏa mãn i^2 = -1. Trong đó: i là đơn vị ảo, a được gọi là phần thực của số phức, b được gọi là phần ảo của số phức. Tập hợp các điểm biểu diễn số phức kí hiệu là C. Phần 2. Biểu diễn hình học của số phức. Cho số phức z = a + bi (a, b ∈ R) được biểu diễn bởi điểm M(a; b) (hay M(z)) trong mặt phẳng tọa độ Oxy (hay còn gọi là mặt phẳng phức). Trong đó: trục hoành Ox (trục thực) biểu diễn phần thực a, trục tung Oy (trục ảo) biểu diễn phần ảo b. Phần 3. Module của số phức. Cho số phức z = a + bi, module của số phức z kí hiệu là |z| và được tính theo biểu thức: |z| = √(a^2 + b^2). Phần 4. Số phức liên hợp. Cho số phức z = a + bi, số phức liên hợp của số phức z kí hiệu là z‾ và được tính theo biểu thức: z‾ = a – bi. Phần 5. Các phép toán về số phức. Các phép toán cơ bản về số phức bao gồm: phép cộng, trừ hai số phức, phép nhân hai số phức, phép chia cho số phức khác 0. Phần 6. Các tính chất của số phức. Cho số phức z = x + yi , ba tính chất sau của số phức được xếp vào 1 nhóm. Cho 2 số phức z1 = x1 + y1i và z2 = x2 + y2i, ba tính chất tiếp theo được xếp vào nhóm liên hợp. Cho 2 số phức z1 = x1 + y1i và z2 = x2 + y2i, ba tính chất tiếp theo được xếp vào nhóm module. [ads] BÀI 2 . CÁC DẠNG QUỸ TÍCH PHỨC Phần 1. Các dạng quỹ tích cơ bản. Đường thẳng: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường thẳng nếu như M(x;y) có tọa độ thỏa mãn phương trình đường thẳng: Ax + By + C = 0. Đường tròn: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường tròn nếu như M(x;y) có tọa độ thỏa mãn phương trình đường tròn (C) : (x – a)^2 + (y – b)^2 = R^2, trong đó I(a;b) là tâm đường tròn và R là bán kính đường tròn. Đường Elip: Quỹ tích các điểm M biểu diễn số phức z = x + yi là đường elip nếu như M(x;y) có tọa độ thỏa mãn phương trình đường elip (E): x^2/a^2 + y^2/b^2 = 1, trong đó a, b tương ứng là các bán trục lớn và bán trục nhỏ của elip. Phần 2. Một số dạng toán nâng cao về quỹ tích phức. Cho hai số phức z1 và z2 được biểu diễn bởi các điểm tương ứng là M1 và M2. Khi đó |z1 – z2| = M1M2. BÀI 3 . PHƯƠNG TRÌNH PHỨC Phần 1. Căn bậc hai số phức. Cho số phức z = a + bi, số phức w = x + yi được gọi là căn bậc hai của số phức z nếu w^2 = z hay (x + yi)^2 = a + bi. Phần 2. Phương trình phức bậc 2. BÀI 4 . DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 1. Khái niệm về dạng lượng giác của số phức. Cho số phức z = a + bi, số phức trên được gọi là dạng đại số của số phức. Số phức z = r(cosφ + isinφ) được gọi là dạng lượng giác của số phức, trong đó: r: là module của số phức, φ: là argument của số phức. 2. Cách chuyển đổi một số phức từ dạng đại số sang lượng giác. Để chuyển số phức z = a + bi sang dạng lượng giác z = r(cosφ + isinφ) ta phải tìm được module và argument của số phức. 3. Nhân và chia hai số phức dạng lượng giác. 4. Công thức Moiver và ứng dụng dạng lượng giác của số phức. Cho số phức z = r(cosφ + isinφ), khi đó z^n = [r(cosφ + isinφ)]n = r^n[cos(nφ) + isin(nφ)].
500 bài tập chọn lọc thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 326 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển chọn 500 bài tập trắc nghiệm chủ đề thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học chương 1, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 500 bài tập chọn lọc thể tích khối đa diện – Lê Minh Tâm: + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh bên SA vuông góc với đáy, SA = 3a và thể tích của khối chóp bằng a3. Tính độ dài cạnh đáy AB. + Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, SA vuông góc (ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 30. Thể tích khối chóp S.ABC là? + Cho hình chóp S.ABC có thể tích V = 2a3 và đáy ABC là tam giác vuông cân tại A biết AB = a. Tính h là khoảng cách từ S đến mặt phẳng (ABC).
Hệ thống dạng toán và bài tập chuyên đề thể tích khối đa diện
Tài liệu gồm 123 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (trường THPT Đặng Huy Trứ – Admin CLB Giáo Viên Trẻ TP Huế), tuyển tập hệ thống dạng toán và bài tập chuyên đề thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học. TỔNG HỢP MỘT SỐ DẠNG TÍNH THỂ TÍCH CẦN LƯU Ý. Dạng 1: Hình chóp tam giác có cạnh bên vuông góc với đáy. Dạng 2: Hình chóp tứ giác có cạnh bên vuông góc với đáy. Dạng 3: Hình chóp tam giác đều. Dạng 4: Hình chóp tứ giác đều. Dạng 5: Hình chóp tam giác có mặt bên là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Dạng 6: Hình chóp tứ giác có mặt bên là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Dạng 7: Hình lăng trụ đều. Dạng 8: Hình lăng trụ đứng. Dạng 9: Hình lăng trụ có đường cao khác cạnh bên. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN TRONG ĐỀ THI THPT QUỐC GIA.
Bài tập trắc nghiệm thể tích khối đa diện vận dụng cao
Tài liệu gồm 64 trang, tuyển chọn các bài tập trắc nghiệm thể tích khối đa diện vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 1: Khối Đa Diện Và Thể Tích Của Chúng. THỂ TÍCH KHỐI ĐA DIỆN: Phần 1. Thể tích khối đa diện. Phần 2. Tỷ số thể tích. Phần 3. Cực trị.