Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 11 môn Toán lần 1 năm 2023 2024 trường THPT Lê Hồng Phong Thanh Hóa

Nội dung Đề kiểm tra lớp 11 môn Toán lần 1 năm 2023 2024 trường THPT Lê Hồng Phong Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng bồi dưỡng môn Toán lớp 11 lần 1 năm học 2023 – 2024 trường THPT Lê Hồng Phong, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 001 – 002 – 003 – 004. Trích dẫn Đề kiểm tra Toán lớp 11 lần 1 năm 2023 – 2024 trường THPT Lê Hồng Phong – Thanh Hóa : + Cho đường thẳng a song song với mặt phẳng (P). Mặt phẳng (Q) chứa đường thẳng a và cắt mặt phẳng (P) theo giao tuyến là đường thẳng b. Vị trí trương đối của hai đường thẳng a và b là A. cắt nhau. B. trùng nhau. C. chéo nhau. D. song song. + Ông Trung có 100 triệu đồng gửi tiết kiệm vào ngân hàng theo thể thức lãi kép kì hạn 6 tháng với lãi suất 8% một năm. Giả sử lãi suất không thay đổi. Hỏi sau 3 năm số tiền trong tài khoản tiết kiệm của ông Trung là bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. a) Xác định giao điểm K của mặt phẳng (AMN) và đường thẳng SC. b) Tính tỉ số SK SC.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 11 cấp trường năm 2018 2019 trường Thuận Thành 2 Bắc Ninh
Nhằm tuyển chọn các em học sinh khối lớp 11 giỏi môn Toán để thành lập đội tuyển học sinh giỏi Toán 11 THPT, trường THPT Thuận Thành 2, tỉnh Bắc Ninh tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán 11 THPT năm học 2018 – 2019. Các em học sinh đạt điểm số cao trong kỳ thi lần này sẽ được tuyên dương trước toàn trường để làm tấm gương học tập cho các học sinh khác, đồng thời được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi Toán cấp tỉnh. Đề thi HSG Toán 11 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh được biên soạn theo hình thức tự luận với 5 bài toán, đề gồm 01 trang, học sinh làm bài thi trong 150 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi HSG Toán 11 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD = a, AB = b. Mặt bên SAD là tam giác đều. M là một điểm di động trên AB, Mặt phẳng (P) đi qua M và song song với SA, BC. 1. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (P). Thiết diện là hình gì? 2. Tính diện tích thiết diện theo a, b và x = AM (0 < x < b). Tìm x theo b để diện tích thiết diện lớn nhất. + Chọn ngẫu nhiên một số tự nhiên có sáu chữ số khác nhau. Tính xác suất để chọn được một số có 3 chữ số chẵn và 3 chữ số lẻ. + Cho các số x + 5y, 5x + 2y, 8x + y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số (y – 1)^2, xy – 1, (x + 2)^2 theo thứ tự lập thành một cấp số nhân. Hãy tìm x, y.
Đề thi chọn HSG Toán 11 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh
Đề thi chọn HSG Toán 11 cấp trường năm 2017 – 2018 trường Lý Thái Tổ – Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 14 tháng 04 năm 2018 nhằm phát hiện, tuyển chọn các em học sinh giỏi môn Toán khối 11 để bồi dưỡng chuẩn bị cho các cuộc thi HSG Toán cấp tỉnh, quốc gia … đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 11 cấp trường năm 2017 – 2018 : + Cho hình vuông ABCD cạnh a. Gọi O là giao điểm của hai đường chéo. Trên nửa đưởng thẳng Ox vuông góc với mặt phẳng chứa hình vuông, ta lấy điểm S sao cho góc SCB = 60 độ. Tính khoảng cách giữa hai đường thẳng BC và SD. [ads] + Cho hàm số y = x^3/3 – x^2 + x + m có đồ thị là (C). Tìm tất cả các giá trị của m để tiếp tuyến của đồ thị (C) tại điểm M có xM = 3 chắn hai trục tọa độ một tam giác có diện tích bằng 2. + Cho a, b, c, d là các số thực thoả mãn a^2 + b^2 = 25; c^2 + d^2 = 16 và ac + bd ≥ 20. Tìm giá trị lớn nhất của biểu thức: P = a + d.
Đề thi chọn HSG Toán 11 cấp trường năm 2017 - 2018 trường Lê Văn Thịnh - Bắc Ninh
Đề thi chọn HSG Toán 11 cấp trường năm 2017 – 2018 trường Lê Văn Thịnh – Bắc Ninh gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức vào ngày 7/4/2018 nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11 để rèn luyện, bồi dưỡng thêm, hướng đến các kỳ thi học sinh giỏi Toán cấp cao hơn, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 11 cấp trường : + Cho đa giác lồi n cạnh nội tiếp đường tròn, biết số tam giác lập được bằng 4/7 số tứ giác lập được từ n đỉnh của đa giác đó. Tìm hệ số của x^4 trong khai triển (3 + 2x)^n. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AD // BC), BC = 2a, AB = AD = DC = a (a > 0). Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc với AC. [ads] a) Chứng minh mặt phẳng (SBC) vuông góc mặt phẳng (ABCD). Tính độ dài đoạn thẳng SD. b) Mặt phẳng (α) đi qua điểm M thuộc đoạn thẳng OD (M khác O và D) và song song với đường thẳng SD và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (α) biết MD = x. Tìm x để diện tích thiết diện lớn nhất.
Đề thi chọn HSG tỉnh Toán 11 năm học 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 11 năm học 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 01 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề được dành cho học sinh lớp 10 và 11 khối THPT, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 11 sở Hà Tĩnh 2017 – 2018 : + Năm 2018 là năm kỷ niệm 50 năm Chiến thắng Đồng Lộc (24/7/1968-24/7/2018), trường học X cho học sinh trong các đội tuyển học sinh giỏi Toán khối 10, khối 11 của trường về tham quan khu di tích Ngã ba Đồng lộc. Biết rằng đội tuyển Toán khối 10 có 4 em gồm 2 nam, 2 nữ; đội tuyển Toán khối 11 có 4 em gồm 3 nam, 1 nữ. Trong đợt tham quan thứ nhất, trường chọn 3 học sinh với yêu cầu có cả đội tuyển 10, cả đội tuyển 11; có cả nam và cả nữ. Hỏi có bao nhiêu cách chọn. [ads] + Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, H là trung điểm của AB, SH ⊥ (ABC), SH = x. Gọi M là hình chiếu vuông góc của H lên đường thẳng AC và N là điểm thỏa mãn vtMH = vtHN. a) Khi x = a√3/2, chứng minh đường thẳng SN vuông góc với mặt phẳng (SAC). b) Tìm x theo a để góc giữa đường thẳng SB và mặt phẳng (SAC) bằng 45 độ.