Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt cầu, mặt trụ, mặt nón - Nguyễn Trọng

Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, trình bày tóm tắt lý thuyết, ví dụ minh họa và bài tập chuyên đề mặt cầu, mặt trụ, mặt nón, hỗ trợ học sinh khối 12 trong quá trình tự học chương trình Hình học 12 chương 2 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu chuyên đề mặt cầu, mặt trụ, mặt nón – Nguyễn Trọng: BÀI 1 . MẶT NÓN TRÒN XOAY. + Dạng 1. Dạng cơ bản (cho các thông số r, h, l) (Trang 2). + Dạng 2. Thiết diện qua trục SO (Trang 3). + Dạng 3. Khối nón sinh bởi tam giác quay quanh các trục (Trang 6). + Dạng 4. Bài toán thiết diện qua đỉnh và mối liên hệ với góc hoặc khoảng cách (Trang 9). BÀI 2 . MẶT TRỤ TRÒN XOAY. + Dạng 1. Dạng cơ bản (cho các thông số r, l, h) (Trang 13). + Dạng 2. Sự tạo thành mặt trụ tròn xoay (Trang 15). + Dạng 3. Sự tương giao giữa hình trụ và mặt phẳng, đường thẳng (Trang 17). BÀI 3 . MẶT CẦU – KHỐI CẦU. + Dạng 1. Công thức lí thuyết cơ bản (Trang 21). + Dạng 2. Khối cầu ngoại tiếp khối đa diện (Trang 23). BÀI 4 . BÀI TOÁN NỘI TIẾP – NGOẠI TIẾP. + Dạng 1. Nón nội tiếp, ngoại tiếp hình chóp, trụ, cầu (Trang 32). + Dạng 2. Nón nội tiếp, ngoại tiếp hình chóp, trụ, cầu (Trang 35).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt nón
Tài liệu gồm 31 trang được biên soạn bởi quý thầy, cô giáo trong nhóm Tài Liệu Dạy Thêm, bao gồm lý thuyết mặt nón, bài tập mẫu, bài tập tự luyện và bài tập trắc nghiệm chuyên đề mặt nón. Nội dung tài liệu : A. KIẾN THỨC CẦN NHỚ : Tóm tắt các khái niệm, tính chất, công thức tính diện tích – thể tích mặt nón, hình nón. 1. Mặt nón tròn xoay. 2. Hình nón tròn xoay. 3. Một số tính chất. 4. Công thức diện tích và thể tích của hình nón. B. BÀI TẬP MẪU C. BÀI TẬP TỰ LUYỆN D. BÀI TẬP TRẮC NGHIỆM 1. Tính diện tích, thể tích mặt nón đơn thuần. 2. Quay tam giác. 3. Mặt nón ngoại tiếp khối đa diện.
Trắc nghiệm nâng cao nón - trụ - cầu - Đặng Việt Đông
Tài liệu gồm 131 trang được biên soạn bởi thầy Đặng Việt Đông tuyển chọn các bài toán trắc nghiệm nâng cao nón – trụ – cầu có lời giải chi tiết trong chương trình Hình học 12 chương 2, các bài toán được chọn lọc từ các đề thi thử môn Toán, tài liệu thích hợp cho học sinh khá, giỏi ôn luyện điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. + Vấn đề 1. Mặt nón – khối nón + Vấn đề 2. Mặt trụ – khối trụ + Vấn đề 3. Mặt cầu – khối cầu + Vấn đề 4. Mặt tròn xoay – khối tròn xoay + Vấn đề 5. Ứng dụng thực tế Xem thêm :  Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông (Hình học 12 chương 3)
Kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian - Hà Duy Nghĩa
Tài liệu sáng kiến kinh nghiệm được biên soạn bởi thầy Hà Duy Nghĩa gồm 20 trang, trình bày một số kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian. Tài liệu trình bày các vấn đề : + Bài toán liên quan đến thể tích khối đa diện: Trình bày một số kỹ thuật tính thể tích thông qua việc phân chia các thể tích cũng như tính tỉ số thể tích trực tiếp, gián tiếp và những ưu khuyết điểm của nó. + Bài toán liên quan đến tâm, bán kính mặt cầu ngoại tiếp hình đa diện: Trình bày về vấn đề hay gặp là tìm bán kính mặt cầu ngoại tiếp khối chóp và lăng trụ còn về tâm mặt cầu thì chỉ đề cập. + Bài toán liên quan đến hình tròn xoay: Trình bày một số bài toán liên quan đến thể tích các vật thể tròn xoay trong thực tế, các dạng bài tập tương tự như các bài trong đề thi minh họa và đề thử nghiệm.
Tài liệu chuyên Toán THPT chuyên đề Hình học không gian
Cuốn sách Tài liệu chuyên Toán THPT chuyên đề Hình học không gian gồm 160 trang được biên soạn bởi các tác giả Trần Đức Huyên, Nguyễn Duy Hiếu (trường THPT chuyên Lê Hồng Phong – TP. HCM nhằm giúp các em học sinh khối 11 – 12 cải thiện và nâng cao kỹ năng giải toán Hình học không gian và hướng đến kỳ thi THPTQG. Nội dung sách : Phần 1. Lý thuyết và phương pháp giải toán Chương 1. Hình lăng trụ Chương 2. Hình hộp Chương 3. Hình chóp Chương 4. Hình cầu Chương 5. Hình trụ Chương 6. Hình nón Chương 7. Các bài toán về khoảng cách Chương 8. Các bài toán về góc Phần 2. Ứng dụng để giải các đề tuyển sinh đại học [ads] Xem thêm : + Tài liệu chuyên Toán – Hình học 11 + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên (Tài liệu cùng tác giả)