Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II lớp 10 môn Toán

Nội dung Tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II lớp 10 môn Toán Bản PDF Tài liệu gồm 49 trang được biên soạn bởi thầy Lương Tuấn Đức (Facebook: Giang Sơn) tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán lớp 10, giúp học sinh ôn tập để chuẩn bị cho kỳ thi HK2 Toán lớp 10 tại trường. Các đề thi được biên soạn theo dạng đề trắc nghiệm, mỗi đề gồm 50 câu, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn tài liệu tuyển tập 10 đề thi trắc nghiệm chất lượng học kỳ II môn Toán lớp 10: + Tính tổng S bao gồm tất cả các giá trị tham số m để đường thẳng x + my – 2m + 3 = 0 cắt đường tròn (C): x^2 + y^2 + 4x + 4y + 6 = 0 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB lớn nhất, trong đó I là tâm đường tròn (C). [ads] + Một người thợ xây cần xây một bể chứa 10m3 nước, có dạng hình hộp chữ nhật với đáy là hình vuông và không có nắp. Hỏi chiều dài, chiều rộng và chiều cao của lòng bể bằng bao nhiêu để số viên gạch dùng để xây bể là ít nhất, biết thành bể và đáy bể đều được xây bằng gạch, độ dày của thành bể và đáy là như nhau, các viên gạch có kích thước như nhau và số viên gạch trên một đơn vị diện tích bằng nhau. + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại B có BC = 2AB. Điểm M (2;– 2) là trung điểm của cạnh AC. Gọi N là điểm trên cạnh BC sao cho BC = 4BN. Điểm H(4/5;8/5) là giao điểm của AN và BM. Biết N thuộc đường thẳng x + 2y = 6, tính tổng các hoành độ của C và A khi hai đỉnh đó có tọa độ nguyên.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường chuyên Trần Đại Nghĩa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa – TP HCM : + Một cái bàn có mặt bàn là hình elip, biểu diễn trong mặt phẳng toạ độ Oxy có phương trình (E). Một tấm khăn hình chữ nhật ABCD được phủ lên mặt bàn (A, B, C, D thuộc elip (E), các cạnh của hình chữ nhật ABCD đối xứng nhau qua hai trục của elip (E)). Biết chiều dài hình chữ nhật song song trục lớn và bằng nửa độ dài trục lớn của elip. Tính diện tích phần mặt bàn không bị phủ bởi tấm khăn biết rằng nếu elip có phương trình (a > b > 0) thì diện tích elip là piab. + Cho tam giác nhọn ABC với trực tâm H. Cho W là một điểm tùy ý trên cạnh BC, khác với các điểm B và C. Các điểm M và N tương ứng là chân các đường cao hạ từ B và C. Kí hiệu w1 là đường tròn ngoại tiếp tam giác BWN, và gọi X là điểm trên w1 sao cho WX là đường kính của w1. Tương tự, kí hiệu w2 là đường tròn ngoại tiếp tam giác CWM, và gọi Y là điểm trên w2 sao cho WY là đường kính của w2. Chứng minh rằng các điểm X, Y và H thẳng hàng. + Trong mặt phẳng toạ độ Oxy, tính tiêu cự của elip có phương trình x2 + 4y2 = 1.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(−1; 3), B(5; −5) và đường thẳng d : 2x + 3y − 1 = 0. a. Viết phương trình tham số và phương trình tổng quát của đường thẳng AB. b. Viết phương trình đường tròn tâm A và tiếp xúc với đường thẳng d. c. Viết phương trình đường tròn (C) đi qua các điểm A, B và có tâm thuộc đường thẳng d. + Trên đường tròn lượng giác, điểm M thỏa mãn (Ox;OM) = 700◦ thì nằm ở góc phần tư thứ? + Gọi ∆ là đường thẳng đi qua điểm M(−1; 3) và nhận −→u = (3; 1) làm vectơ chỉ phương. Trong các phương trình sau, phương trình tham số của đường thẳng ∆ là?
Đề thi HK2 Toán 10 năm học 2019 - 2020 trường THPT Ngô Gia Tự - Đắk Lắk
Ngày … tháng 06 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra khảo sát chất lượng học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk mã đề 182 gồm có 03 trang với 20 câu trắc nghiệm (chiếm 04 điểm) và 06 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 182, 183, 215, 216. Trích dẫn đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong các phương trình sau, có một phương trình là phương trình chính tắc của một elip. Hãy cho biết đó là phương trình nào? + Trong mặt phẳng toạ độ Oxy, cho hai điểm A(-2;6), B(1;2) và đường tròn (T) có phương trình (x – 3)^2 + (y + 1)^2 = 5. a) Viết phương trình đường tròn (C) có tâm A và đi qua B. b) Gọi d là tiếp tuyến của đường tròn (T) tại điểm M (4;-3) thuộc (T). Viết phương trình tổng quát của d. + Trong mặt phẳng toạ độ Oxy, cho đường tròn (C) có phương trình (x – 1)^2 + y^2 = 2 và đường thẳng ∆: x – y + m = 0. Tìm m để trên ∆ có duy nhất một điểm M mà từ đó có thể kẻ được hai tiếp tuyến MA, MB tới (C) (với A, B là các tiếp điểm) sao cho tam giác MAB đều.
Đề thi HK2 Toán 10 năm học 2019 - 2020 trường THPT Gia Định - TP HCM
Ngày … tháng 06 năm 2020, trường THPT Gia Định, quận Bình Thạnh, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 môn Toán 10 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM có dạng tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Gia Định – TP HCM : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho đường tròn (C): x^2 + y^2 – 4x + 6y + 3 = 0. a) Tìm tọa độ tâm và tính bán kính của đường tròn (C). b) Viết phương trình tiếp tuyến (d) với đường tròn (C), biết tiếp tuyến (d) song song với đường thẳng delta: 3x – y + 1 = 0. Tìm tọa độ tiếp điểm. [ads] + Trong mặt phẳng với hệ trục toạ độ Oxy, cho (E): 16x^2 + 25y^2 = 400. Tìm tọa độ các tiêu điểm F1 và F2; đỉnh, tính tiêu cự; độ dài các trục của (E). + Cho cosa = 4/5 với 0 độ < a < 90 độ và cosb = -12/13. Tính các giá trị: sina; tana; cot a và tính giá trị biểu thức: A = cos(a + b).cos(a – b).