Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện Toán 7 năm 2022 - 2023 phòng GDĐT Lục Ngạn - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lục Ngạn – Bắc Giang : + Địa y là một dạng kết hợp giữa nấm (mycobiont) và một loại sinh vật có thể quang hợp (photobiont hay phycobiont) trong một mối quan hệ cộng sinh. Khi trái đất nóng dần lên làm cho băng trên các dòng sông bị đóng băng tan dần. Mười hai năm sau khi băng tan, Địa y bắt đầu phát triển và nếu mỗi nhóm Địa y phát triển trên một khoảng đất hình tròn thì mối quan hệ giữa đường kính d (tính bằng mi-li-mét) của hình tròn đó và tuổi r của Địa y có thể biểu diễn tương đối theo công thức: d = 7t − 12 (với t ≥ 12). Năm 2022, người ta đã đo được đường kính của một nhóm Địa y cạnh một dòng sông là 42mm. Với kết quả đo trên, em hãy tính xem băng trên dòng sông đó đã tan vào năm nào? + Cho tam giác MNP vuông cân ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. a) Chứng minh: HMN = KPM. b) Chứng minh MAP là tam giác cân và AH vuông góc AK. + Một bể cá hình hộp chữ nhật có chiều dài 60cm, chiều rộng 25cm và chiều cao 50 cm. Để nuôi cá, người ta đổ 45 lít nước và một tiểu cảnh bằng đá vào bể. Biết khi đó chiều cao mực nước trong bề là 34 cm. Hãy tính thể tích của tiểu cảnh đó.

Nguồn: toanmath.com

Đọc Sách

Đề HSG huyện Toán 7 năm 2021 - 2022 phòng GDĐT Thuận Thành - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề HSG huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Thuận Thành – Bắc Ninh : + Cho ba hình chữ nhật, biết diện tích của hình thứ nhất và diện tích của hình thứ hai tỉ lệ với 4 và 5, diện tích hình thứ hai và diện tích hình thứ ba tỉ lệ với 7 và 8, hình thứ nhất và hình thứ hai có cùng chiều dài và tổng các chiều rộng của chúng là 27 cm, hình thứ hai và hình thứ ba có cùng chiều rộng, chiều dài của hình thứ ba là 24 cm. Tính diện tích của mỗi hình chữ nhật đó. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. 1. Chứng minh rằng: AC = EB và AC // BE 2. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: Al = EK. Chứng minh: I, M, K thẳng hàng. 3. Từ E kẻ EH vuông góc BC (H thuộc BC). Biết góc HBE bằng 50°; góc MEB bằng 25°, tính các góc HEM và BME? 4. Từ điểm O tùy ý trong tam giác ABC, kẻ OQ, ON, OP lần lượt vuông góc với các cạnh BC, CA, AB. Hãy tính tỉ số: (AN2 + BP2 + CQ2)/(AP2 + BQ2 + CN2). + Tìm các số nguyên dương a b c thỏa mãn.
Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứmg minh rằng đa thức f(x) có ít nhất hai nghiệm là 0 và -1. + Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. 1. Chứng minh BM = CN. 2. Chứng minh BC đi qua trung điểm của MN 3. Đường trung trực của MN và tia phân giác của góc BAC cắt nhau tại K. Chứng minh KC vuông góc AC. + Cho M N 2018 2019 2020 2021 2019 2020 2021 2018. So sánh M và N?
Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện của hội Chữ thập đỏ huyện Ứng Hòa, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5, 6, 7 nhưng sau đó chia theo tỉ lệ 4, 5, 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC nhọn (AB < AC). Vẽ về phía ngoài ABC các tam giác đều là ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao điểm của AB và DC. 1) Chứng minh ADC = ABE. 2) Chứng minh DIB = 60°. 3) Gọi M, N lần lượt là trung điểm CD và BE. Chứng minh AMN đều. 4) Chứng minh IA là tia phân giác DIE. + Cho 100 số hữu tỉ trong đó tích của bất kỳ ba số nào cũng là một số âm. Chứng minh rằng tất cả 100 số đó đều là số âm.
Đề học sinh giỏi Toán 7 năm 2021 - 2022 phòng GDĐT Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn đề học sinh giỏi Toán 7 năm 2021 – 2022 phòng GD&ĐT Diễn Châu – Nghệ An : + Ba khối 6, 7, 8 của một trường THCS có tất cả 441 học sinh. Nếu số học sinh khối 6; học sinh khối 7 và số học sinh khối 8 tham gia dự thi “Đấu trường Toán hoc VIOEDU” thì số học sinh còn lại của ba khối bằng nhau. Tính số học sinh mỗi khối của trường đó. + Cho tam giác ABC có ba góc nhọn (AB < AC), D là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng AB có chứa điểm C vẽ đoạn thẳng AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng bờ là đường thẳng AC có chứa điểm B vẽ đoạn thẳng AK vuông góc với AC và AK = AC. Trên tia đối của tia DA lấy điểm N sao cho DN = DA. Gọi M là giao điểm của AD và KE. Chứng minh rằng? + Tìm số tự nhiên n có hai chữ số biết rằng hai số (2n + 1) và (3n + 1) đồng thời là số chính phương. Chứng minh rằng với mọi số tự nhiên n > 2 thì tổng?