Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề lũy thừa với số mũ tự nhiên

Tài liệu gồm 29 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề lũy thừa với số mũ tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . THỰC HIỆN TÍNH, VIẾT DƯỚI DẠNG LŨY THỪA. Sử dụng công thức. Dạng 2 . SO SÁNH CÁC LŨY THỪA. Để so sánh hai lũy thừa ta thường biến đổi về hai lũy thừa có cùng cơ số hoặc có cùng số mũ (có thể sử dụng các lũy thừa trung gian để so sánh). Với a b m n N ta có: n n a b a b n N. Với A B là các biểu thức ta có 0 n n A B A B. Dạng 3 . TÌM SỐ CHƯA BIẾT TRONG LŨY THỪA. Khi giải bài toán tìm x có luỹ thừa phải: Phương pháp 1: Biến đổi về các luỹ thừa cùng cơ số. Phương pháp 2: Biến đổi về các luỹ thừa cùng số mũ. Phương pháp 3: Biến đổi về dạng tích các lũy thừa. Dạng 4 . MỘT SỐ BÀI TẬP NÂNG CAO VỀ LŨY THỪA. Phương pháp 1: Để so sánh hai luỹ thừa ta thường đưa về so sánh hai luỹ thừa cùng cơ số hoặc cùng số mũ. – Nếu hai luỹ thừa cùng cơ số (lớn hơn 1) thì luỹ thừa nào có số mũ lớn hơn sẽ lớn hơn. – Nếu hai luỹ thừa cùng số mũ (lớn hơn 0) thì lũy thừa nào có cơ số lớn hơn sẽ lớn hơn. Phương pháp 2: Dùng tính chất bắc cầu, tính chất đơn điệu của phép nhân. Một số dạng toán thường gặp: + Dạng 1: So sánh hai số lũy thừa. + Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). + Dạng 3: Từ việc so sánh lũy thừa, tìm cơ số (số mũ) chưa biết. + Dạng 4: Sử dụng lũy thừa chứng minh chia hết.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính tổng dãy số có quy luật
Tài liệu gồm 103 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề tính tổng dãy số có quy luật, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT Dạng 1: Tổng các số hạng cách đều S = a1 + a2 + a3 + … + an. Dạng 2: Tính tổng có dạng S = 1 + a + a2 + a3 + … + an. Dạng 3: Tính tổng có dạng S = 1 + a2 + a4 + a6 + … + a2n. Dạng 4: Tính tổng có dạng S = a + a3 + a5 + a7 + … + a2n + 1. Dạng 5: Tính tổng có dạng S = 1.2 + 2.3 + 3.4 + 4.5 + … + n(n + 1). Dạng 6: Tính tổng có dạng S = 12 + 22 + 32 + 42 + … + n2. Dạng 7: Tính tổng có dạng S = 12 + 32 + 52 + … + (2k + 1)2. Dạng 8: Tính tổng có dạng S = 22 + 42 + 62 + … + (2k)2. Dạng 9: Tính tổng có dạng S = a1.a2 + a2.a3 + a3.a4 + … + an.an+1. Dạng 10: Tính tổng có dạng S = a1.a2.a3 + a2.a3.a4 + a3.a4.a5 + … + an.an+1.an+2. Dạng 11: Tính tổng có dạng S = 1 + 23 + 33 + … + n3. Dạng 12: Liên phân số. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ THI HSG TOÁN 6
Chuyên đề so sánh
Tài liệu gồm 105 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề so sánh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT CHỦ ĐỀ 1: SO SÁNH LŨY THỪA. I. KIẾN THỨC CẦN NHỚ. II. CÁC DẠNG TOÁN. Dạng 1: So sánh hai số lũy thừa. Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). Dạng 3: Từ việc so sánh lũy thừa tìm cơ số (số mũ) chưa biết. Dạng 4: Một số bài toán khác. CHỦ ĐỀ 2: SO SÁNH PHÂN SỐ. I. TÓM TẮT LÝ THUYẾT. II. CÁC DẠNG TOÁN. Phương pháp 1: Quy đồng mẫu dương. Phương pháp 2: Quy đồng tử dương. Phương pháp 3: Tích chéo với các mẫu dương. Phương pháp 4: Dùng số hoặc phân số làm trung gian. Phương pháp 5: Dùng tính chất. Phương pháp 6: Đổi phân số lớn hơn đơn vị ra hỗn số để so sánh. III. CÁC BÀI TẬP TỔNG HỢP. B. BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ HSG TOÁN 6
Chuyên đề chữ số tận cùng
Tài liệu gồm 45 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề chữ số tận cùng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT. 1. Tìm một chữ số tận cùng. Tính chất 1: + Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi. + Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi. + Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1. + Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 6. Tính chất 2: + Một số tự nhiên bất kì khi nâng lên lũy thừa bậc 4n + 1 thì chữ số tận cùng vẫn không thay đổi. + Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng. Tính chất 3: + Số có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 7; số có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 3. + Số có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 8; số có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4 3 n sẽ có chữ số tận cùng là 2. + Các số có chữ số tận cùng là 0, 1, 4, 5, 6, 9 khi nâng lên lũy thừa bậc 4 3 n sẽ không thay đổi chữ số tận cùng. 2. Tìm hai chữ số tận cùng. Việc tìm hai chữ số tận cùng của số tự nhiên x chính là việc tìm số dư của phép chia x cho 100. 3. Tìm ba chữ số tận cùng trở lên. Việc tìm ba chữ số tận cùng của số tự nhiên x chính là việc tìm số dư của phép chia x cho 1000. II. CÁC DẠNG TOÁN. Dạng 1: Tìm một chữ số tận cùng. Dạng 2: Tìm hai chữ số tận cùng. Dạng 3: Tìm ba chữ số tận cùng. Dạng 4: Vận dụng chứng minh chia hết, chia có dư. Dạng 5: Vận dụng chữ số tận cùng vào bài toán chính phương. III. BÀI TẬP. B. BÀI TOÁN TRONG ĐỀ THI HSG VÀ CHUYÊN TOÁN 6
Tóm tắt lý thuyết và bài tập trắc nghiệm xác suất thực nghiệm
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề xác suất thực nghiệm, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khả năng xảy ra của một sự kiện. Để nói về khả năng xảy ra của một sự kiện, ta dùng một con số có giá trị từ 0 đến 1. Một sự kiện không xảy ra, có khả năng xảy ra bằng 0. Một sự kiện chắc chắn xảy ra, có khả năng xảy ra bằng 1. 2. Xác suất thực nghiệm. Thực hiện lặp đi lặp lại một hoạt động nào đó n lần. Gọi n A là số lần sự kiện A xảy ra trong n lần đó. Tỉ số n A n được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện. B. BÀI TẬP TRẮC NGHIỆM