Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2023 trường THCS Văn Khê Hà Nội

Nội dung Đề thi thử Toán vào năm 2023 trường THCS Văn Khê Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023 trường THCS Văn Khê Hà Nội Đề thi thử Toán vào năm 2023 trường THCS Văn Khê Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn Đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm 2023 trường THCS Văn Khê, quận Hà Đông, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 20 tháng 02 năm 2023. Để chuẩn bị cho kỳ thi, hãy cùng xem qua một số bài tập mẫu trong đề thi: Bài 1: Hai công nhân làm chung trong 12 ngày thì hoàn thành công việc đã định. Họ làm chung với nhau 4 ngày thì người thứ nhất được điều đi làm việc khác, người thứ hai làm công việc còn lại trong 10 ngày. Hỏi người thứ nhất làm một mình thì sau bao lâu hoàn thành công việc. Bài 2: Tia nắng AB và bóng cột cờ HB tạo nên góc ABH = 30°. Biết BH = 14m. Tính chiều cao AH của cột cờ (làm tròn đến chữ số thập phân thứ hai). Bài 3: Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Hai đường cao BE và CF của tam giác ABC cắt nhau tại điểm H. Gọi K là trung điểm BC. Chứng minh tứ giác BFEC nội tiếp đường tròn và AE.AC = AF.AB. Chứng minh đường thẳng OA vuông góc với đường thẳng EF. Đường phân giác góc FHB cắt AB và AC lần lượt tại M và N. Gọi I là trung điểm của MN và J là trung điểm của AH. Chứng minh tứ giác AFHI nội tiếp và ba điểm I, J, K thẳng hàng. Hãy ôn tập kỹ càng và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các em học sinh thành công! Cùng nhau rèn luyện và phấn đấu để đạt được kết quả tốt nhất!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 trường THPT chuyên ĐH Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 trường THPT chuyên Đại học Vinh, tỉnh Nghệ An. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 trường THPT chuyên ĐH Vinh – Nghệ An : + Cho đa thức P(x) = x2 + bx + c có hai nghiệm nguyên. Biết rằng |c| =< 16 và |P(9)| là số nguyên tố. Tìm các hệ số b, c. + Cho đường tròn (O) đường kính AB. Đường thẳng ∆ tiếp xúc với (O) tại A, I là điểm cố định trên đoạn AB và CD là dây cung thay đổi của (O) luôn đi qua I. Các đường thẳng BC, BD cắt ∆ lần lượt tại M, N. a) Chứng minh rằng CDNM là tứ giác nội tiếp. b) Gọi K là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BMN với đường thẳng AB. Chứng minh rằng KMCI là tứ giác nội tiếp và tích AM · AN không đổi. c) Gọi T là tâm đường tròn ngoại tiếp tứ giác CDNM. Tìm vị trí của CD sao cho độ dài đoạn thẳng BT nhỏ nhất. + Gọi M là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau. Tìm số nguyên dương k lớn nhất để tồn tại tập hợp con A có k phần tử của tập hợp M sao cho tích của A số bất kì thuộc tập hợp A đều chia hết cho 3.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường PTNK – TP HCM : + Người ta tô màu mỗi ô của bảng hình vuông 4 × 4 bằng một trong hai màu đen hoặc trắng thỏa mãn các điều kiện sau: i. Số ô đen trên các hàng đều bằng nhau. ii. Số ô đen trên các cột đôi một khác nhau. a) Tính số ô đen trên mỗi hàng. b) Hai ô kề nhau trên một hàng hoặc một cột được gọi là “cặp tốt” nếu chúng được tô bằng hai màu khác nhau. Hỏi tổng số các “cặp tốt” tính theo tất cả các cột có thể lớn nhất là bao nhiêu? Hỏi tương tự cho các “cặp tốt” tính theo tất cả các hàng. + Cho m, n là các số nguyên không âm thỏa mãn m2 − n = 1. a) Đặt n2 – m = a. Chứng minh rằng a là số lẻ. b) Chứng minh rằng nếu a = 3.2^k + 1 với k là số nguyên dương thì k = 1. c) Chứng minh rằng a không thể là số chính phương. + Cho tam giác ABC. Gọi D, E, F là các tiếp điểm của đường tròn (I) nội tiếp tam giác ABC với BC, CA, AB. Từ chân đường phân giác ngoài L của góc BAC (L thuộc BC), kẻ tiếp tuyến LH đến đường tròn (I) (H thuộc (I), H khác D). a) Chứng minh rằng đường tròn ngoại tiếp tam giác ALH đi qua tâm nội tiếp I. b) Chứng minh BAD = CAH. c) AH cắt lại (I) tại K. Gọi G là trọng tâm tam giác KEF và J là giao điểm của DG với EF. Chứng minh KJ vuông góc EF. d) Gọi S là trung điểm BC, KJ cắt lại (I) tại R. Chứng minh rằng EF, IR và AS đồng quy.
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2023 – 2024 trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 – 2024 trường PTNK – TP HCM : + Học sinh kẻ bảng sau vào giấy làm bài thi và trả lời các câu hỏi trắc nghiệm bằng cách: – Ghi 01 ký tự A hoặc B hoặc C hoặc D vào ô trả lời tương ứng với đáp án của câu hỏi. – Bỏ câu trả lời (nếu có) bằng cách gạch chéo ký tự (A hoặc B hoặc C hoặc D) đã ghi và ghi lại 01 ký tự (A hoặc B hoặc C hoặc D) vào ô trả lời tương ứng với đáp án của câu hỏi. + Trong một chương trình làm từ thiện của các bạn học sinh lớp 10 trường PTNK. Chương trình thực hiện phát tập cho các em học sinh của một trường tiểu học vùng sâu. Chương trình sẽ chia làm ba đợt phát tập cho các em, mỗi đợt sẽ chia đều số tập và phát cho các em học sinh có mặt. Lần 1 nhóm phát 120 quyển tập, lần 2 nhóm phát 160 quyển tập và lần 3 nhóm phát 315 quyển tập. Lần 1 có 5 em học sinh vắng mặt, lần 2 có 3 em học sinh vắng mặt, lần 3 các em học sinh có mặt đầy đủ. Biết rằng các em học sinh đi cả 3 đợt nhận thấy số tập nhận được ở đợt 3 bằng tổng số tập nhận được ở hai đợt đầu. Hỏi trường tiểu học có bao nhiêu học sinh. + Cho tam giác ABC nhọn nội tiếp đường tròn (O; R). Hai tiếp tuyến của (O) tại B, C cắt nhau tại M. Đoạn MO cắt BC tại H và MA cắt (O) tại D (D khác A). Vẽ Ax là tiếp tuyến tại A của (O). a) Chứng minh MB2 = MD.MA và tứ giác ADHO nội tiếp. b) Qua M vẽ đường thẳng song song Ax cắt AB, AC lần lượt tại P, Q. Chứng minh tam giác MBP cân và M là trung điểm của PQ. c) Chứng minh AB.AP = AC.AQ và PAM = CAH.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho thí sinh thi chuyên Toán và Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Bình. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Thái Bình : + Cho đa thức bậc ba P(x) thỏa mãn khi chia P(x) cho x − 1; x − 2; x − 3 đều được số dư là 6 và P(−1) = −18. Tìm đa thức P(x). + Cho tam giác ABC vuông tại A với AB = c, AC = b. Vẽ đường tròn tâm O1 đường kính AB và đường tròn tâm O2 đường kính AC. Gọi H là giao điểm thứ hai của hai đường tròn (O1) và (O2). Đường thẳng (d) thay đổi luôn đi qua A cắt các đường tròn (O1) và (O2) lần lượt tại các điểm D, E (không trùng với A) sao cho A nằm giữa D và E. a) Chứng minh rằng đường trung trực của đoạn thẳng DE luôn đi qua một điểm cố định khi đường thẳng (d) thay đổi. b) Xác định vị trí của đường thẳng (d) để diện tích tứ giác BDEC đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó theo b, c. c) Kẻ đường thẳng đi qua trung điểm của đoạn DE và vuông góc với BC tại điểm K. Chứng minh rằng KB2 = BD2 + KH2. + Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (7 − p)(7 + p) chia hết cho 24.