Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Anh Sơn - Nghệ An

Đề chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An : + Cho ba số thực dương a, b, c thỏa mãn: ab + bc + ca = 1. Chứng minh rằng. + Cho tam giác ABC có AB < AC; BAC = 45°; vẽ các đường cao BM và CN. a) Chứng minh: AM.AC = AN.AB. b) Chứng minh BC2 = 2.MN2. c) Từ A kẻ đường thẳng song song với BM cắt đường thẳng BC tại Q. Chứng minh. + Bên trong hình vuông có cạnh bằng 1cm lấy 51 điểm phân biệt không có ba điểm nào thẳng hàng, chứng minh tồn tại ít nhất 3 điểm trong 51 điểm đó tạo thành một tam giác có diện tích bé hơn 0,04 cm2.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Trích dẫn Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Thái Nguyên : + Cho phương trình x2 – 2(m + 1)x + 4m − m2 = 0 (m là tham số). a. Giải phương trình với m = 1. b. Chứng minh rằng với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt. c. Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: x12 + 2(m + 1)x2 – 4 = 0. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Gọi K là hình chiếu vuông góc của A trên cạnh BC. E, F lần lượt là hình chiếu vuông góc của K trên các cạnh AB, AC. a. Chứng minh AEF = ACB. Từ đó chỉ ra tứ giác BCFE nội tiếp đường tròn. b. Gọi I là giao điểm của hai đường thẳng BC và EF. Chứng minh rằng IK2 = IB.IC. c. Đường thẳng IA cắt đường tròn (O) tại điểm J (J khác A). Gọi D là tâm đường tròn ngoại tiếp tứ giác BCFE. Chứng minh rằng ba điểm D, K, J thẳng hàng. + Chứng minh rằng nếu a là số tự nhiên không chia hết cho 5 và không chia hết cho 7 thì (a4 − 1)(a4 + 15a2 + 1) chia hết cho 35. Cho m, n, p là ba số nguyên dương thỏa mãn mn = p(m + n) và m, p là hai số nguyên tố cùng nhau. Chứng minh rằng mnp là số chính phương.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Hải Dương
Thứ Năm ngày 20 tháng 01 năm 2022, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kì thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2021 – 2022. Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Đông Anh – Hà Nội.
Đề thi chọn HSG Toán 9 năm 2021 - 2022 phòng GDĐT Lộc Ninh - Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT Lộc Ninh – Bình Phước.