Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm khối đa diện và khối tròn xoay - Nguyễn Khánh Nguyên

Tài liệu gồm 40 trang với 300 bài tập trắc nghiệm chủ đề khối đa diện và khối tròn xoay trích trong các đề thi thử THPT Quốc gia. + Chủ đề 1. Khối đa diện + Chủ đề 2. Khối chóp + Chủ đề 3. Thể tích lăng trụ + Chủ đề 4. Khoảng cách + Chủ đề 5. Khối tròn xoay + Chủ đề 6. Khối nón + Chủ đề 7. Khối trụ + Chủ đề 8. Khối cầu + Chủ đề 9. Hỗn hợp: Nón – Trụ – Cầu + Chủ đề 10. Toán thực tế [ads] Trích dẫn tài liệu : + [CHUYÊN TRẦN PHÚ – 2017] Từ một nguyên vật liệu cho trước, một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm2. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc hình trụ. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy B. Hình trụ và chiều cao bằng bán kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình trụ và chiều cao bằng đường kính đáy + [ĐỒNG ĐẬU – 2017] Trong các mệnh đề sau, mệnh đề nào sai? A. Hình tạo bởi một số hữu hạn các đa giác được gọi là hình đa diện B. Khối đa diện bao gồm phần không gian được giới hạn bởi hình đa diện và cả hình đa diện đó C. Mỗi cạnh của một đa giác trong hình đa diện là cạnh chung của đúng hai đa giác D. Hai đa giác bất kì trong một hình đa diện hoặc là không có điểm chung, hoặc là có một đỉnh chung, hoặc là có một cạnh chung + [QUỐC HỌC HUẾ – 2017] Trong không gian cho hai điểm phân biệt A, B cố định. Tìm tập hợp tất cả các điểm M trong không gian thỏa mãn vtMA.vtMB = 3/4.AB^2 A. Mặt cầu đường kính AB B. Tập hợp rỗng (tức là không có điểm M nào thỏa mãn điều kiện trên) C. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = AB D. Mặt cầu có tâm I là trung điểm của đoạn thẳng AB và bán kính R = 3/4AB

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC khối đa diện và thể tích của chúng
Tài liệu gồm 103 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) khối đa diện và thể tích của chúng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 1 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC khối đa diện và thể tích của chúng: CHỦ ĐỀ 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. Dạng 1. Điều kiện để một hình là hình đa diện – khối đa diện. Dạng 2. Xác định số đỉnh, cạnh, mặt của một khối đa diện. Dạng 3. Phân chia, lắp ghép các khối đa diện. Dạng 4. Phép biến hình trong không gian. CHỦ ĐỀ 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. Dạng 1. Nhận diện đa diện lồi, đa diện đều. Dạng 2. Các đặc điểm của khối đa diện đều. CHỦ ĐỀ 3 . THỂ TÍCH CỦA KHỐI ĐA DIỆN. Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 2. Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối chóp biết trước một đường thẳng vuông góc với đáy. Dạng 5. Thể tích khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên, mặt bên cùng tạo với đáy những góc bằng nhau. Dạng 6. Thể tích lăng trụ đứng. Dạng 7. Thể tích lăng trụ xiên. Dạng 8. Thể tích hình hộp. Dạng 9. Tỉ số thể tích khối chóp. Dạng 10. Tỉ số thể tích khối lăng trụ. Dạng 11. Tỉ số thể tích khối hộp. Dạng 12. Tách hình để tính thể tích. Dạng 13. Phục hình và trải phẳng. Dạng 14. Bài toán cực trị liên quan đến thể tích khối đa diện. Dạng 15. Sử dụng thể tích để tính khoảng cách.
Các dạng bài tập VDC thể tích của khối đa diện
Tài liệu gồm 79 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) thể tích của khối đa diện, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC thể tích của khối đa diện: A. LÍ THUYẾT Công thức tính thể tích khối chóp, lăng trụ. Các công thức hình phẳng cần nắm. Nhắc lại cách xác định các góc trong không gian. B. CÁC DẠNG BÀI TẬP Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 2. Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối chóp biết trước một đường thẳng vuông góc với đáy. Dạng 5. Thể tích khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên, mặt bên cùng tạo với đáy những góc bằng nhau. Dạng 6. Thể tích lăng trụ đứng. Dạng 7. Thể tích lăng trụ xiên. Dạng 8. Thể tích hình hộp. Dạng 9. Tỉ số thể tích khối chóp. Dạng 10. Tỉ số thể tích khối lăng trụ. Dạng 11. Tỉ số thể tích khối hộp. Dạng 12. Tách hình để tính thể tích. Dạng 13. Phục hình và trải phẳng. Dạng 14. Bài toán cực trị liên quan đến thể tích khối đa diện. Dạng 15. Sử dụng thể tích để tính khoảng cách.
Các dạng bài tập VDC khái niệm về khối đa diện, khối đa diện lồi và khối đa diện đều
Tài liệu gồm 24 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) khái niệm về khối đa diện, khối đa diện lồi và khối đa diện đều, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC khái niệm về khối đa diện, khối đa diện lồi và khối đa diện đều: BÀI 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. A. LÍ THUYẾT 1. Khối lăng trụ và khối chóp. 2. Khái niệm về hình đa diện và khối đa diện. 3. Hai đa diện bằng nhau. 4. Phân chia và lắp ghép các khối đa diện. B. CÁC DẠNG BÀI TẬP Dạng 1. Điều kiện để một hình là hình đa diện – khối đa diện. Dạng 2. Xác định số đỉnh, cạnh, mặt của một khối đa diện. Dạng 3. Phân chia, lắp ghép các khối đa diện. Dạng 4: Phép biến hình trong không gian. BÀI 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. A. LÍ THUYẾT 1. Khối đa diện lồi. 2. Khối đa diện đều. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Nhận diện đa diện lồi, đa diện đều. Dạng 2: Các đặc điểm của khối đa diện đều.
Bài tập VD - VDC khối đa diện và thể tích của chúng
Tài liệu gồm 49 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn 69 câu hỏi và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích của chúng, mức độ vận dụng và vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phù hợp với đối tượng học sinh có học lực khá – giỏi, ôn thi điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT 2020 môn Toán.