Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập trắc nghiệm số phức - Phùng Hoàng Em

Tài liệu gồm 30 trang tóm tắt lý thuyết số phức và tuyển chọn các bài tập trắc nghiệm số phức có đáp án giúp học sinh học tốt chương trình Giải tích 12 chương 4 và ôn tập thi THPT Quốc gia môn Toán, tài liệu được biên soạn bởi thầy Phùng Hoàng Em. BÀI 1 . NHẬP MÔN SỐ PHỨC Vấn đề 1 . Xác định các đại lượng liên quan đến số phức. 1. Biến đổi số phức z về dạng A + Bi. 2. Khi đó: phần thực là A, phần ảo là B, số phức liên hợp là A + Bi = A − Bi, mô-đun bằng √(A^2 +B^2). Vấn đề 2 . Số phức bằng nhau. a + bi = c + di ⇔ a = c và b = d. a + bi = 0 ⇔ a = 0 và b = 0. Vấn đề 3 . Điểm biểu diễn số phức. Mỗi số phức z = a + bi được biểu diễn bởi duy nhất một điểm M(a,b) trên mặt phẳng tọa độ. Vấn đề 4 . Lũy thừa với đơn vị ảo. Các công thức biến đổi: i2 = −1, i3 = −i, in = 1 nếu n chia hết cho 4, in = i nếu n chia 4 dư 1, in = −1 nếu n chia 4 dư 2, in = −i nếu n chia 4 dư 3. Tổng n số hạng đầu của một cấp số cộng: Sn = n/2(u1 + un) hoặc Sn = n/2(2u1 + (n − 1)d), với u1 là số hạng đầu, d là công sai. Tổng n số hạng đầu của một cấp số nhân: Sn = u1.(1 − qn)/(1 − q), với u1 là số hạng đầu, q là công bội (q khác 1). [ads] BÀI 2 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH Vấn đề 1 . Phương trình với hệ số phức. Trong chương trình, ta chỉ xét phương trình dạng này với ẩn z bậc nhất. + Ta giải tương tự như giải phương trình bậc nhất trên tập số thực. + Thực hiện các biến đổi đưa về dạng z = A + Bi. Vấn đề 2 . Phương trình bậc hai với hệ số thực và một số phương trình quy về bậc hai. Xét phương trình ax2 + bx + c = 0, với a, b, c ∈ R và a khác 0. Đặt ∆ = b2 − 4ac, khi đó: 1. Nếu ∆ ≥ 0 thì phương trình có nghiệm x = (−b ±√∆)/2a. 2. Nếu ∆ < 0 thì phương trình có nghiệm x = (−b ± i√|∆|)/2a. 3. Định lý Viet: x1 + x2 = −b/a và x1.x2 = c/a. Vấn đề 3 . Xác định số phức bằng cách giải hệ phương trình. Gọi z = a + bi, với a, b ∈ R. + Nếu đề bài cho dạng hai số phức bằng nhau, ta áp dụng một trong hai công thức sau: a + bi = c + di ⇔ a = c hay b = d, a + bi = 0 ⇔ a = 0 hay b = 0. + Nếu đề bài cho phương trình ẩn z và kèm theo một trong các ẩn z, |z| … Ta thay z = a + bi vào điều kiện đề cho, đưa về “hai số phức bằng nhau”. + Nếu đề cho z thỏa hai điều kiện riêng biệt thì từ 2 điều kiện đó, ta tìm được hệ phương trình liên quan đến a, b. Giải tìm a, b. BÀI 3 . BIỄU DIỄN HÌNH HỌC CỦA SỐ PHỨC Vấn đề . Biễu diễn hình học của số phức. Trong mặt phẳng toạ độ Oxy, giả sử: M(x;y) là điểm biểu diễn của z = x + yi (x, y ∈ R), N(x’;y’) là điểm biểu diễn của z’ = x’ + y’i (x’, y’ ∈ R), I(a;b) là điểm biểu diễn của z0 = a + bi cho trước (a, b ∈ R). Khi đó, ta có các kết quả sau: + |z| = √(x^2 + y^2) = OM (khoảng cách từ điểm M đến gốc toạ độ O). + |z – z’| = √(x’ – x)2(y’ – y)2 = MN (khoảng cách giữa M và N). + |z – z0| ≤ R ⇔ (x – a)^2 + (y – b)^2 ≤ R^2: hình tròn tâm I(a; b), bán kính R. + |z – z0| = R ⇔ (x – a)^2 + (y – b)^2 = R^2: đường tròn tâm I(a; b), bán kính R.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC ứng dụng của tích phân
Tài liệu gồm 55 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) ứng dụng của tích phân, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC ứng dụng của tích phân: A. KIẾN THỨC SÁCH GIÁO KHOA CẦN NẮM 1. Diện tích hình phẳng. 2. Thể tích của khối tròn xoay. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.
Các dạng bài tập VDC tích phân và một số phương pháp tính tích phân
Tài liệu gồm 52 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) tích phân và một số phương pháp tính tích phân, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC tích phân và một số phương pháp tính tích phân: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Định nghĩa và tính chất của tích phân. 2. Các phương pháp tính tích phân. 3. Tích phân các hàm số đặc biệt. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân.
Các dạng bài tập VDC nguyên hàm và một số phương pháp tìm nguyên hàm
Tài liệu gồm 31 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) nguyên hàm và một số phương pháp tìm nguyên hàm, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC nguyên hàm và một số phương pháp tìm nguyên hàm: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Nguyên hàm và tính chất. 2. Phương pháp tính nguyên hàm. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tìm nguyên hàm bằng các phép biến đổi sơ cấp. Dạng 2: Phương pháp đổi biến dạng 1, đặt u = u(x). Dạng 3: Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 5: Các bài toán thực tế ứng dụng nguyên hàm.
Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại nguyên hàm, tích phân
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (facebook: Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại nguyên hàm, tích phân (không bao gồm ứng dụng của tích phân) từ phần 1 đến phần 10; giúp học sinh học nâng cao chương trình Giải tích 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại nguyên hàm, tích phân : + Hàm số y = f(x) liên tục trên R thỏa mãn 2f(x)f'(x) + 108x^2 = (8x + 9)f(x) + (4x^2 + 9x)f'(x). Tính ∫[4f(x) + 9f'(x)]dx biết rằng đồ thị hàm số y = f(x) đi qua gốc tọa độ và tiếp tuyến của đồ thị luôn cắt trục hoành. + Cho hàm số y = f(x), hàm số y = f'(x) có đồ thị như hình vẽ bên. Biết rằng diện tích hình phẳng giới hạn bởi trục Ox và đồ thị hàm số y = f'(x) trên đoạn [-2;1] và [1;4] lần lượt bằng 9 và 12. Cho f (1) = 3, giá trị biểu thức f (-2) + f (4) bằng? [ads] + Hàm số y = f(x) có đạo hàm trên R thỏa mãn f'(x) ≥ x^4 + 2/x^2 – 2x với x > 0 và f (1) = -1. Mệnh đề nào sau đây đúng? A. Phương trình f(x) có một nghiệm trên (0;1). B. Phương trình f(x) có đúng ba nghiệm trên (0;+vc). C. Phương trình f(x) có một nghiệm trên (1;2). D. Phương trình f(x) có một nghiệm trên (2;5).