Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập VDC thể tích của khối đa diện

Tài liệu gồm 79 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) thể tích của khối đa diện, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC thể tích của khối đa diện: A. LÍ THUYẾT Công thức tính thể tích khối chóp, lăng trụ. Các công thức hình phẳng cần nắm. Nhắc lại cách xác định các góc trong không gian. B. CÁC DẠNG BÀI TẬP Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 2. Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối chóp biết trước một đường thẳng vuông góc với đáy. Dạng 5. Thể tích khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên, mặt bên cùng tạo với đáy những góc bằng nhau. Dạng 6. Thể tích lăng trụ đứng. Dạng 7. Thể tích lăng trụ xiên. Dạng 8. Thể tích hình hộp. Dạng 9. Tỉ số thể tích khối chóp. Dạng 10. Tỉ số thể tích khối lăng trụ. Dạng 11. Tỉ số thể tích khối hộp. Dạng 12. Tách hình để tính thể tích. Dạng 13. Phục hình và trải phẳng. Dạng 14. Bài toán cực trị liên quan đến thể tích khối đa diện. Dạng 15. Sử dụng thể tích để tính khoảng cách.

Nguồn: toanmath.com

Đọc Sách

Hệ thống bài tập trắc nghiệm số phức vận dụng cao
Tài liệu gồm 146 trang, được biên soạn bởi thầy giáo Đặng Công Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm số phức mức độ vận dụng cao, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 và ôn thi tốt nghiệp THPT môn Toán. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM SỐ PHỨC VẬN DỤNG CAO: + Biến đổi số phức nâng cao (phần 1 – phần 8). + Quỹ tích số phức nâng cao (phần 1 – phần 8). + Phương trình phức nâng cao (phần 1 – phần 8). + Cực trị số phức có yếu tố đường tròn (phần 1 – phần 8). + Cực trị số phức có yếu tố đoạn thẳng, đường thẳng, tia, nửa mặt phẳng (phần 1 – phần 8). + Cực trị số phức có yếu tố ba đường conic (phần 1 – phần 8). + Cực trị số phức có yếu tố đối xứng, tâm tỉ cự, tích vô hướng, tam giác đồng dạng (phần 1 – phần 8). + Cực trị số phức có yếu tố hình học hỗn hợp (phần 1 – phần 8). + Cực trị số phức sử dụng bất đẳng thức đại số, lượng giác, khảo sát hàm số (phần 1 – phần 8).
Bài tập trắc nghiệm cực trị hình học trong số phức
Tài liệu gồm 56 trang, tuyển chọn các bài tập trắc nghiệm cực trị hình học trong số phức, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Giải tích chương 4: Số Phức. + Vấn đề 1. Điểm và đường thẳng. + Vấn đề 2. Điểm và đường tròn. + Vấn đề 3. Đường thẳng và đường tròn. + Vấn đề 4. Đường tròn và đường tròn. + Vấn đề 5. Parabol. + Vấn đề 6. Đoạn thẳng – tia. + Vấn đề 7. Phương pháp lấy đối xứng. + Vấn đề 8. Tâm tỉ cự. + Vấn đề 9. Phương pháp cân bằng hệ số. + Vấn đề 10. Elip.
Bài tập tuyển chọn số phức - Nguyễn Hoàng Việt
Tài liệu gồm 79 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp các bài tập tuyển chọn chuyên đề số phức, giúp học sinh lớp 12 rèn luyện khi học chương trình Giải tích 12 chương 4. Chương 4 . SỐ PHỨC 1. Bài 1. CƠ BẢN VỀ SỐ PHỨC 01 1. Bài 2. CƠ BẢN VỀ SỐ PHỨC 02 11. Bài 3. PHƯƠNG TRÌNH PHỨC VỚI HỆ SỐ THỰC 20. Bài 4. PHƯƠNG TRÌNH HỆ SỐ PHỨC 29. Bài 5. XỬ LÝ MODULE PHỨC 34. Bài 6. CƠ BẢN MẶT PHẲNG PHỨC 41. Bài 7. BẤT ĐẲNG THỨC TAM GIÁC PHỨC 58. Bài 8. KĨ NĂNG BÌNH PHƯƠNG VÔ HƯỚNG PHỨC 64.
400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Hoàng Tuyên và thầy giáo Minh Tâm, tuyển chọn 400 bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết; các câu hỏi và bài tập được phân loại thành 10 dạng toán; tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 và ôn thi tốt nghiệp THPT môn Toán. + Dạng toán 1. Các phép toán số phức (Trang 3). + Dạng toán 2. Phần thực – phần ảo của số phức (Trang 10). + Dạng toán 3. Số phức liên hợp (Trang 13). + Dạng toán 4. Module số phức (Trang 17). + Dạng toán 5. Phương trình bậc nhất (Trang 22). + Dạng toán 6. Phương trình bậc hai & mối liên hệ giữa hai nghiệm (Trang 28). + Dạng toán 7. Phương trình bậc cao (Trang 44). + Dạng toán 8. Biểu diễn số phức (Trang 52). + Dạng toán 9. Tập hợp điểm biểu diễn số phức (Trang 66). + + Dạng toán 9.1. Tập hợp điểm biểu diễn là đường thẳng (Trang 66). + + Dạng toán 9.2. Tập hợp điểm biểu diễn là đường tròn (Trang 72). + + Dạng toán 9.3. Tập hợp điểm biểu diễn là đường Coníc (Trang 79). + Dạng toán 10. Max – min của module số phức (Trang 83).