Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giới hạn dãy số, giới hạn hàm số và hàm số liên tục

Tài liệu gồm 58 trang bao gồm lý thuyết SGK, phân dạng toán và bài tập rèn luyện các chủ đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục trong chương trình Đại số và Giải tích 11 chương 4. GIỚI HẠN CỦA DÃY SỐ I. Lý thuyết giới hạn của dãy số  1. Dãy số có giới hạn 0 2. Dãy số có giới hạn hữu hạn 3. Dãy số có giới hạn vô cực II. Các dạng toán về giới hạn của dãy số Dạng 1. Tính giới hạn dãy số cho bởi công thức Dạng 2. Tính giới hạn của dãy số cho bởi hệ thức truy hồi Dạng 3. Tổng của cấp số nhân lùi vô hạn Dạng 4. Tìm giới hạn của dãy số mà tổng là n số hạng đầu tiên của một dãy số khác III. Bài tập rèn luyện kỹ năng Dạng 1. Bài tập lý thuyết Dạng 2. Bài tập tính giới hạn dãy số cho bởi công thức Dạng 3. Tổng của cấp số nhân lùi vô hạn Dạng 4. Tìm giới hạn của dãy số cho bởi hệ thức truy hồi Dạng 5. Tìm giới hạn của dãy số có chứa tham số Dạng 6. Tìm giới hạn của dãy số mà số hạng tổng quát là tổng của n số hạng đầu tiên của một dãy số khác [ads] GIỚI HẠN CỦA HÀM SỐ I. Lý thuyết giới hạn của hàm số 1. Định nghĩa giới hạn của hàm số tại một điểm 2. Định nghĩa giới hạn của hàm số tại vô cực 3. Một số giới hạn đặc biệt 4. Định lí về giới hạn hữu hạn 5. Quy tắc về giới hạn vô cực 6. Các dạng vô định II. Các dạng toán về giới hạn của hàm số Dạng 1. Tìm giới hạn xác định bằng cách sử dụng trực tiếp các định nghĩa, định lí và quy tắc Dạng 2. Tìm giới hạn vô định dạng 0/0 Dạng 3. Giới hạn vô định dạng ∞/∞ Dạng 4. Giới hạn vô định dạng 0.∞ Dạng 5. Dạng vô định ∞ – ∞ III. Bài tập rèn luyện kỹ năng HÀM SỐ LIÊN TỤC I. Lý thuyết hàm số liên tục II. Các dạng toán về hàm số liên tục Dạng 1. Xét tính liên tục của hàm số Dạng 2. Chứng minh phương trình có nghiệm III. Bài tập rèn luyện kỹ năng

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giới hạn, hàm số liên tục Toán 11 CTST
Tài liệu gồm 383 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình SGK Toán 11 Chân Trời Sáng Tạo (viết tắt: Toán 11 CTST), có đáp án và lời giải chi tiết. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Chứng minh dãy số có giới hạn 0. + Dạng 2. Tìm giới hạn bằng 0 của dãy số. + Dạng 3. Tính giới hạn của dãy số (un) có un = p(n)/q(n) trong đó p(n), q(n) là các đa thức của n. + Dạng 4. Tính giới hạn của dãy số (un) có un = p(n)/q(n) trong đó p(n), q(n) là các biểu thức chứa căn của n. + Dạng 5. Nhân với một lượng liên hợp. + Dạng 6. Tính giới hạn của dãy số (un) có un = p(n)/q(n) trong đó p(n), q(n) là các biểu thức chứa hàm mũ. + Dạng 7. Dãy số (un) trong đó un là một tổng hoặc một tích của n số hạng (hoặc n thừa số). + Dạng 8. Dãy số (un) cho bằng công thức truy hồi. + Dạng 9. Giới hạn của dãy chứa đa thức hoặc căn theo n. + Dạng 10. Giới hạn của dãy chứa lũy thừa bậc n. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 0. Câu hỏi lý thuyết. + Dạng 1. Dãy số dạng phân thức. + Dạng 2. Dãy số chứa căn thức. + Dạng 3. Dãy số chứa lũy thừa. + Dạng 4. Tổng cấp số nhân lùi vô hạng. + Dạng 5. Một số bài toán khác. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Hàm số có giới hạn hữu hạn tại 0 x không có dạng vô định. + Dạng 2. Dạng vô định 0/0. + Dạng 3. Dạng vô định ∞/∞. + Dạng 4. Dạng vô định ∞ – ∞. + Dạng 5. Dạng vô định 0.∞ + Dạng 6. Giới hạn một bên. + Dạng 7. Giới hạn vô cực. + Dạng 8. Liên quan đến hàm ẩn. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Giới hạn hữu hạn. + Dạng 2. Giới hạn một bên. + Dạng 3. Giới hạn tại vô cực. + Dạng 4. Giới hạn vô định. BÀI 3 . HÀM SỐ LIÊN TỤC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Hàm số liên tục tại một điểm. + Dạng 2. Hàm số liên tục trên một khoảng. + Dạng 3. Chứng minh phương trình có nghiệm. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lý thuyết. + Dạng 2. Liên tục tại một điểm. + Dạng 3. Liên tục trên khoảng. + Dạng 4. Chứng minh phương trình có nghiệm.
Chuyên đề giới hạn của dãy số bồi dưỡng học sinh giỏi Toán THPT
Tài liệu gồm 51 trang, được biên soạn bởi tác giả Cao Hoàng Hạ (Giáo viên trường THPT số 2 An Nhơn, tỉnh Bình Định), hướng dẫn một số phương pháp tìm giới hạn của dãy số, bồi dưỡng học sinh giỏi Toán THPT. Trong kỳ thi học sinh giỏi môn Toán cấp tỉnh và cấp quốc gia, bài toán tìm giới hạn của dãy số và các bài toán liên quan đến dãy số thường xuyên xuất hiện và là một trong những bài toán cơ bản của đề thi. Việc tạo cho học sinh một cách nhìn tổng quát cho bài toán tìm giới hạn của dãy số là rất quan trọng, từ đó giúp các em có tư duy rộng hơn trong việc đánh giá tính chất của một dãy số, và lựa chọn phương pháp thích hợp nhất để tìm giới hạn của một dãy số. Dĩ nhiên mỗi phương pháp có ưu thế riêng cho việc giải quyết một lớp các dãy số cụ thể, cũng có những dãy số có thể giải bằng nhiều cách khác nhau. Ở đây, trong chuyên đề này, tác giả muốn đưa ra một số phương pháp cơ bản để nhận dạng và tìm giới hạn của dãy số, bên cạnh đó nhấn mạnh đến cách nhìn tổng quát, liệu có thể giải bài toán theo nhiều cách hay không? Và có thể tổng quát để tạo ra các dãy số mới tương tự như thế nào? MỤC LỤC : Một số phương pháp tìm giới hạn của dãy số. I. Sử dụng định lý Weierstrass để tìm giới hạn dãy số 6. II. Phương pháp so sánh dãy số 14. III. Phương pháp ước lượng để tìm giới hạn một số dãy số đặc biệt 26. IV. Định lý lagrange và dãy số sinh bởi nghiệm của phương trình 34. V. Xác định công thức số hạng tổng quát từ hệ thức truy hồi và tìm giới hạn 43.
Chuyên đề giới hạn, hàm số liên tục Toán 11 KNTTvCS
Tài liệu gồm 377 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình SGK Toán 11 Kết Nối Tri Thức Với Cuộc Sống (viết tắt: Toán 11 KNTTvCS), có đáp án và lời giải chi tiết. BÀI 15 . GIỚI HẠN CỦA DÃY SỐ. + Dạng toán 1. Chứng minh dãy số có giới hạn 0. + Dạng toán 2. Tìm giới hạn bằng 0 của dãy số. + Dạng toán 3. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các đa thức của n. + Dạng toán 4. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa căn của n. + Dạng toán 5. Nhân với một lượng liên hợp. + Dạng toán 6. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa hàm mũ a^n, b^n, c^n. + Dạng toán 7. Dãy số (un) trong đó un là một tổng (hoặc một tích) của n số hạng (hoặc n thừa số). + Dạng toán 8. Dãy số (un) cho bằng công thức truy hồi. + Dạng toán 9. Giới hạn của dãy chứa đa thức hoặc căn theo n. + Dạng toán 10. Giới hạn của dãy chứa lũy thừa bậc n. BÀI 16 . GIỚI HẠN CỦA HÀM SỐ. + Dạng toán 1. Hàm số có giới hạn hữu hạn tại x0 không có dạng vô định. + Dạng toán 2. Dạng vô định 0/0. + Dạng toán 3. Dạng vô định ∞/∞. + Dạng toán 4. Dạng vô định ∞ − ∞. + Dạng toán 5. Dạng vô định 0.∞. + Dạng toán 6. Giới hạn một bên. + Dạng toán 7. Giới hạn vô cực. + Dạng toán 8. Liên quan đến hàm ẩn. BÀI 17 . HÀM SỐ LIÊN TỤC. + Dạng toán 1. Hàm số liên tục tại một điểm. + Dạng toán 2. Hàm số liên tục trên một khoảng. + Dạng toán 3. Chứng minh phương trình có nghiệm.
Chuyên đề giới hạn, hàm số liên tục Toán 11 Cánh Diều
Tài liệu gồm 380 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề giới hạn, hàm số liên tục trong chương trình SGK Toán 11 Cánh Diều (viết tắt: Toán 11 CD), có đáp án và lời giải chi tiết. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Chứng minh dãy số có giới hạn 0. + Dạng 2. Tìm giới hạn bằng 0 của dãy số. + Dạng 3. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các đa thức của n. + Dạng 4. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa căn của n. + Dạng 5. Nhân với một lượng liên hợp. + Dạng 6. Tính giới hạn của dãy số (un) có (un) = P(n)/Q(n), trong đó P(n), Q(n) là các biểu thức chứa hàm mũ a^n, b^n, c^n. + Dạng 7. Dãy số (un) trong đó un là một tổng (hoặc một tích) của n số hạng (hoặc n thừa số). + Dạng 8. Dãy số (un) cho bằng công thức truy hồi. + Dạng 9. Giới hạn của dãy chứa đa thức hoặc căn theo n. + Dạng 10. Giới hạn của dãy chứa lũy thừa bậc n. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lý thuyết. + Dạng 2. Dãy số dạng phân thức. + Dạng 3. Dãy số chứa căn thức. + Dạng 4. Dãy số chứa lũy thừa. + Dạng 5. Tổng cấp số nhân lùi vô hạng. + Dạng 6. Một số bài toán khác. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Hàm số có giới hạn hữu hạn tại x0 không có dạng vô định. + Dạng 2. Dạng vô định 0/0. + Dạng 3. Dạng vô định ∞/∞. + Dạng 4. Dạng vô định ∞ − ∞. + Dạng 5. Dạng vô định 0.∞. + Dạng 6. Giới hạn một bên. + Dạng 7. Giới hạn vô cực. + Dạng 8. Liên quan đến hàm ẩn. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Giới hạn hữu hạn. + Dạng 2. Giới hạn một bên. + Dạng 3. Giới hạn tại vô cực. + Dạng 4. Giới hạn vô định. BÀI 3 . HÀM SỐ LIÊN TỤC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Hàm số liên tục tại một điểm. + Dạng 2. Hàm số liên tục trên một khoảng. + Dạng 3. Chứng minh phương trình có nghiệm. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Câu hỏi lý thuyết. + Dạng 2. Liên tục tại một điểm. + Dạng 3. Liên tục trên khoảng. + Dạng 4. Chứng minh phương trình có nghiệm.