Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nguyên hàm và tích phân hàm lượng giác

Tài liệu gồm 32 trang được biên soạn bởi các tác giả: Nguyễn Minh Tuấn và Phạm Việt Anh, hướng dẫn phương pháp giải các dạng toán nguyên hàm và tích phân hàm lượng giác từ cơ bản đến nâng cao, thường gặp trong chương trình Giải tích 12 chương 3. Các dạng toán nguyên hàm và tích phân hàm lượng giác trong tài liệu: 1. Các dạng toán cơ bản Dạng 1 . Tính tích phân tổng quát sau: ${I_1} = \int {{{(\sin x)}^n}} dx$, ${I_2} = \int {{{(\cos x)}^n}} dx.$ Dạng 2 . Đôi khi trong khi làm các bài tính tích phân ta bắt gặp các bài toán liên quan tới tích các biểu thức $\sin x$, $\cos x$ khi đó ta sẽ sử dụng các công thức biến tích thành tổng để giải quyết các bài toán này. Sau đây là các công thức cần nhớ: $I = \int {(\cos mx)} (\cos nx)dx$ $ = \frac{1}{2}\int {(\cos (} m – n)x + \cos (m + n)x)dx.$ $I = \int {(\sin mx)} (\sin nx)dx$ $ = \frac{1}{2}\int {(\cos (} m – n)x – \cos (m + n)x)dx.$ $I = \int {(\sin mx)} (\cos nx)dx$ $ = \frac{1}{2}\int {(\sin (} m + n)x + \sin (m – n)x)dx.$ $I = \int {(\cos mx)} (\sin nx)dx$ $ = \frac{1}{2}\int {(\sin (} m + n)x – \sin (m – n)x)dx.$ Dạng 3 . Tính tích phân tổng quát $I = \int {{{\sin }^m}} x{\cos ^n}xdx.$ Dạng 4 . Tính tích phân tổng quát ${I_1} = \int {{{(\tan x)}^n}} dx$, ${I_2} = \int {{{(\cot x)}^n}} dx.$ Dạng 5 . Tính tích phân tổng quát $I = \int {\frac{{{{(\tan x)}^m}}}{{{{(\cos x)}^n}}}} dx$, $I = \int {\frac{{{{(\cot x)}^m}}}{{{{(\sin x)}^n}}}} dx.$ [ads] 2. Các dạng toán biến đổi nâng cao Các bài toán nguyên hàm tích phân lượng giác rất phong phú và do đó sẽ không dừng lại các dạng toán bên trên. Ở phần này ta sẽ cùng tìm hiểu các dạng toán nâng cao hơn, với những phép biến đổi phức tạp hơn. Dạng 1 . Tính tích phân tổng quát $I = \int {\frac{{dx}}{{\sin (x + a)\sin (x + b)}}} .$ Dạng 2 . Tính tích phân tổng quát $I = \int {\tan } (x + a)\tan (x + b)dx.$ Dạng 3 . Tính tích phân tổng quát $I = \int {\frac{{dx}}{{a\sin x + b\cos x}}} .$ Dạng 4 . Tính tích phân tổng quát $I = \int {\frac{{dx}}{{a\sin x + b\cos x + c}}} .$ Dạng 5 . Tính tích phân tổng quát $I = \int {\frac{{dx}}{{a{{\sin }^2}x + b\sin x\cos x + c{{\cos }^2}x}}} .$ Dạng 6 . Xét tích phân tổng quát $I = \int {\frac{{{a_1}\sin x + {b_1}\cos x}}{{{a_2}\sin x + {b_2}\cos x}}} dx.$ Dạng 7 . Xét tích phân tổng quát $I = \int {\frac{{a{{(\sin x)}^2} + b\sin x\cos x + c{{(\cos x)}^2}}}{{m\sin x + n\cos x}}} dx.$ Dạng 8 . Xét tích phân tổng quát $I = \int {\frac{{m\sin x + n\cos x}}{{a{{(\sin x)}^2} + 2b\sin x\cos x + c{{(\cos x)}^2}}}} dx.$ Dạng 9 . Biến đổi nâng cao dạng tích phân: $\int {\frac{{dx}}{{{{(\sin x)}^n}}}} $ và $\int {\frac{{dx}}{{{{(\cos x)}^n}}}} .$

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nguyên hàm, tích phân và ứng dụng - Lư Sĩ Pháp
Tài liệu gồm 160 trang được biên soạn bởi thầy Lư Sĩ Pháp hướng dẫn giải các dạng toán nguyên hàm, tích phân và ứng dụng trong chương trình Giải tích 12 chương 3. Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. BÀI 1 . NGUYÊN HÀM Dạng 1. Tìm nguyên hàm bằng cách sử dụng bảng các nguyên hàm. Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số. Dạng 3. Tìm nguyên hàm bằng phương pháp tính nguyên hàm từng phần. Dạng 4. Tìm nguyên hàm thỏa mãn điều kiện cho trước. Dạng 5. Tìm nguyên hàm của các hàm số thường gặp: hàm hữu tỉ, hàm vô tỉ, hàm lượng giác. BÀI 2 . TÍCH PHÂN Dạng 1. Tính tích phân bằng định nghĩa. Dạng 2. Tính tích phân bẳng phương pháp đổi biến (Loại 1). Dạng 3. Tính tích phân bẳng phương pháp đổi biến (Loại 2). Dạng 4. Tính tích phân bằng phương pháp từng phần. Dạng 5. Kết hợp giữa phương pháp đổi biến loại 1 và tích phân từng phần. BÀI 3 . ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC Dạng 1. Tính diện tích hình phẳng. Dạng 2. Thể tích vật thể. Dạng 3. Thể tích khối tròn xoay.
Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao - Nguyễn Minh Tuấn
Các bài toán nguyên hàm và tích phân vận dụng, vận dụng cao luôn là các câu hỏi thuộc nhóm phân loại học sinh giỏi, xuất sắc và chiếm một tỉ lệ điểm số tương đối trong đề thi THPT Quốc gia môn Toán. Nhằm giúp các em học sinh có thể nắm vững dạng toán này, tác giả Nguyễn Minh Tuấn đã biên soạn chuyên đề hướng dẫn phương pháp giải các bài toán nguyên hàm – tích phân khó. Nội dung của chuyên đề : 1. Tích phân truy hồi 2. Nguyên hàm – tích phân hàm phân thức hữu tỷ Nguyên hàm phân thức hữu tỷ là một bài toán khá cơ bản, nhưng cũng được phát triển ra rất nhiều bài toán khó. 3. Nguyên hàm – tích phân hàm lượng giác Để làm tốt được các bài toán nguyên hàm – tích phân hàm lượng giác ta cần nắm chắc được các biến đổi hạ bậc lượng giác, tích thành tổng, theo góc phụ …. 4. Đưa biểu thức vào trong dấu vi phân Ở nội dung bài viết này ta sẽ nhắc tới một số bài toán sử dụng kỹ thuật đưa một biểu thức vào trong dấu vi phân, để làm được những bài toán này cần chú ý đến kỹ năng biến đổi, đạo hàm. 5. Tích phân liên kết Có rất nhiều bài toán tích phân ta không thể sử dụng cách tính trực tiếp được hoặc tính trực tiếp tương đối khó với những bài toán như vậy ta thường sử dụng tới một kỹ thuật đó là tích phân liên kết. Chủ yếu các bài toán sử dụng phương pháp này là các tích phân lượng giác hoặc có thể là hàm phân thức. 6. Kỹ thuật lượng giác hóa Khi tính tích phân ta sẽ gặp một số bài toán dưới dấu căn thức chứa một số hàm có dạng đặc biệt mà khó tính như bình thường được, khi đó ta sẽ nghĩ tới phương pháp lượng giác hóa. 7. Nguyên hàm – tích phân từng phần Kỹ thuật từng phần là một kỹ thuât khá cơ bản nhưng rất hiệu quả trong các bài toán tính tích phân, ở trong phần này ta sẽ không nhắc lại các bài toán cơ bản nữa mà chỉ đề cập tới một số bài toán nâng cao trong phần này. 8. Đánh giá hàm số để tính tích phân Trong các bài toán tính tích phân ta sẽ gặp phải một số trường hợp tính tích phân hàm cho bởi 2 công thức phải sử dụng đến đánh giá để so sánh 2 biểu thức từ đó chia tích phân cần tính ra thành 2 phần. 9. Kỹ thuật thế biến – lấy tích phân 2 vế Kỹ thuật thế biến – lấy tích phân 2 vế được áp dụng cho những bài toán mà giả thiết có dạng tổng của hai hàm số, khi đó ta sẽ lợi dụng mối liên hệ giữa các hàm theo biến số x để thay thế những biểu thức khác sao cho 2 hàm số đó đổi chỗ cho nhau. 10. Tích phân hàm cho bởi 2 công thức Ta hiểu nôm na tích phân hàm phân nhánh tức là các phép tính tích phân những hàm cho bởi hai công thức, đây là một vấn đề dễ không có gì khó khăn cả nếu đã từng gặp và biết phương pháp làm. 11. Tích phân hàm ẩn Những bài toán tích phân trong phần này không khó, tất cả được che giấu dưới một lớp các ẩn số, việc làm của chúng ta là phát hiện ra được cách đặt ẩn để đưa tất cả về dạng chuẩn thì bài toán sẽ được giải quyết hoàn toàn. 12. Tích phân đổi cận – đổi biến Các bài toán tích phân đổi biến đổi cận là các bài toán tương đối hay, xuất hiện thường xuyên trong các đề thi thử và đề thi THPT quốc gia. 13. Tích phân có cận thay đổi Nếu như bình thường ta hay xét với những bài tích phân có cận là các hằng số cố định thì trong phần này ta sẽ cùng tìm hiểu các bài toán có cận là các hàm theo biến x. 14. Bài toán liên quan tới f’(x) và f(x) Trong phần này ta sẽ cùng nhau tìm hiểu về một lớp bài toán liên quan tới quan hệ của hai hàm f’(x) và f(x), đây là một dạng đã xuất hiện trong đề thi THPT quốc gia 2018 của bộ GD – ĐT và trong rất nhiều đề thi thử của các trường chuyên. 15. Bất đẳng thức tích phân Các bài toán bất đẳng thức tích phân được giới thiệu trong phần này nhất là phần sử dụng bất đẳng thức Cauchy – Schwarz đa phần chỉ mang tính tính tham khảo, không nên quá đi sâu do đây là chương trình liên quan tới toán cao cấp của bậc đại học. 1. Phân tích bình phương 2. Cân bằng hệ số và bất đẳng thức AM – GM Trong phần này ta sẽ tiếp cận một số bài toán khó hơn phải sử dụng đến bất đẳng thức AM – GM và các kỹ thuật cân bằng hệ số trong bất đẳng thức. 3. Bất đẳng thức Cauchy – Schwarz cho tích phân Nhìn chung thì các bài toán này chưa gặp thì sẽ thấy nó lạ và rất khó, tuy nhiên nếu đã gặp và làm quen rồi thì bài toán này trở nên tương đối dễ.
Chuyên đề nguyên hàm - tích phân và ứng dụng - Bùi Trần Duy Tuấn
giới thiệu đến quý thầy, cô giáo và các em học sinh chuyên đề nguyên hàm – tích phân và ứng dụng do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 321 trang tổng hợp kiến thức cơ bản cần nắm, phân dạng, hướng dẫn cách giải toán và tuyển chọn các ví dụ, bài tập có lời giải chi tiết. Chủ đề 1 . Nguyên hàm I. Tìm nguyên hàm bằng định nghĩa, tính chất và phương pháp phân tích 1. Tìm nguyên hàm các đa thức, lũy thừa, mũ, các hàm chứa căn 2. Tìm nguyên hàm của hàm hữu tỉ 3. Tìm nguyên hàm của hàm lượng giác II. Tìm nguyên hàm bằng phương pháp đổi biến số 1. Phương pháp đổi biến số dạng 1 2. Phương pháp đổi biến số dạng 2 III. Tìm nguyên hàm bằng phương pháp từng phần 1. Kỹ thuật chọn hệ số 2. Kỹ thuật tích phân từng phần bằng phương pháp đường chéo IV. Tìm nguyên hàm bằng tổng hợp các phương pháp Chủ đề 2 : Tích phân I. Phương pháp phân tích, dùng vi phân và sử dụng tính chất của tích phân II. Phương pháp đổi biến 1. Phương pháp đổi biến số dạng 1 2. Phương pháp đổi biến số dạng 2 3. Phương pháp đổi biến cho một số hàm đặc biệt III. Phương pháp từng phần [ads] Chủ đề 3 . Ứng dụng của tích phân I. Ứng dụng tích phân để tính diện tích hình phẳng 1. Một số bài toán về tính diện tích giới hạn bởi các đường cho trước 2. Một số bài toán về ứng dụng tích phân tính diện tích trong thực tế II. Tính thể tích vật thể và thể tích khối tròn xoay 1. Tính thể tích vật thể 2. Tính thể tích khối tròn xoay III. Ứng dụng của tích phân trong các lĩnh vực khác Xem thêm :  + Chuyên đề hàm số – Bùi Trần Duy Tuấn + Chuyên đề lũy thừa, mũ và logarit – Bùi Trần Duy Tuấn + Chuyên đề số phức – Bùi Trần Duy Tuấn + Chuyên đề phương pháp tọa độ trong không gian – Bùi Trần Duy Tuấn Ngoài ra, bạn đọc có thể xem thêm các chuyên đề khác do thầy Bùi Trần Duy Tuấn biên soạn tại địa chỉ: toanhocplus.blogspot.com.
Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng - Đặng Việt Đông
Tài liệu gồm 122 trang tuyển chọn bài tập trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng có lời giải chi tiết do thầy Đặng Việt Đông (Giáo viên trường THPT Nho Quan A – Ninh Bình) biên soạn, trong mỗi phần đều bao gồm tóm lược lý thuyết chung và bài tập trắc nghiệm đi kèm được trích từ các đề thi thử môn Toán, tài liệu thích hợp cho học sinh khá, giỏi để ôn luyện đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia. Trích dẫn tài liệu trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông : + Cho a, b là hai số thực dương. Gọi (K) là hình phẳng nằm trong góc phần tư thứ hai, giới hạn bởi parabol y = ax^2 và đường thẳng y = -bx. Biết thể tích khối tròn xoay tạo được khi quay (K) xung quanh trục hoành là một số không phụ thuộc vào giá trị của a và b. Khẳng định nào sao đây là đúng? [ads] + Cho tích phân C = e^x/√(e^x + 3)dx cận từ a đến b, trong đó a là nghiệm của phương trình 2^(x^2 + 1) = 2, b là một số dương và b > a. Gọi A bằng tích phân x^2dx cận từ 1 đến 2. Tìm chữ số hàng đơn vị của b sao cho C = 3A. + Khi tính nguyên hàm 1/√(2x + 1)(x + 1)^3 dx người ta đặt t = g(x) (một hàm biểu diễn theo biến x) thì nguyên hàm trở thành 2dt. Biết g(4) = 3/√5, giá trị của g(0) + g(1) là?