Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 10 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh

Đề thi chọn HSG Toán 10 cấp trường năm 2017 – 2018 trường Lý Thái Tổ – Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được tổ chức vào ngày 14 tháng 04 năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 cấp trường năm 2017 – 2018 : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I. Trung điểm cạnh AB là M(0; 3), trung điểm đoạn CI là J(1;0). Tìm tọa độ các đỉnh của hình vuông, biết đỉnh D thuộc đường thẳng ∆: x – y + 1 = 0. [ads] + Cho Parabol (P): y = x^2 + 2mx + 3 và đường thẳng (d): y = 2x − 1. Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt A và B thỏa mãn AB = 10. + Cho tam giác ABC có BC = 2, góc A = 60 độ và hai đường trung tuyến BM, CN vuông góc với nhau. Tính diện tích tam giác ABC.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG lớp 10 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Tĩnh
Nội dung Đề thi chọn HSG lớp 10 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn HSG lớp 10 môn Toán năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh Đề thi chọn HSG lớp 10 môn Toán năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh Trong năm học 2019-2020, Trường THPT Trần Phú - Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 để tuyển chọn những em học sinh có thành tích xuất sắc vào đội tuyển học sinh giỏi Toán của nhà trường. Đề thi chọn HSG Toán lớp 10 năm 2019-2020 được biên soạn trong hình thức tự luận, bao gồm 5 bài toán trên 1 trang với thời gian làm bài là 120 phút. Lời giải chi tiết được biên soạn bởi nhóm Toán VD - VDC của trường. Một số câu hỏi trong đề thi gồm: - Cho hàm số y = (m - 2)x^2 - 2(m - 1)x + m + 2 (trong đó m là tham số). Yêu cầu: Xác định giá trị của m để đồ thị hàm số là một đường parabol có tung độ đỉnh bằng 3m, và tìm giá trị của m để hàm số là nghịch biến trên khoảng (-∞;2). - Trong hệ tọa độ Oxy, cho hình thang ABCD có các tọa độ điểm A(-2;-2), B(0;4) và C(7;3).Yêu cầu: Tìm tọa độ điểm E để thỏa mãn điều kiện EA + EB + 2EC = 0, tìm giá trị nhỏ nhất của |PA + PB + 2PC| với P là điểm di động trên trục hoành, và tìm tọa độ đỉnh D của hình thang ABCD nếu diện tích hình thang gấp 3 lần diện tích tam giác MBC. - Cho tam giác ABC đều cạnh 3a, điểm M trên BC, điểm N trên CA sao cho BM = a, CN = 2a. Yêu cầu: Tìm tích vô hướng AM.BC theo a, tính độ dài của PN nếu AM vuông góc với PN. Đề thi chọn HSG Toán lớp 10 năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh mang đến cho các em học sinh cơ hội thể hiện kiến thức và khả năng giải quyết bài toán hiệu quả, từ đó chinh phục được những vấn đề khó trong môn Toán. Chúc các em thành công!
Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đức Cảnh Thái Bình
Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đức Cảnh Thái Bình Bản PDF Đề thi HSG Toán lớp 10 năm 2018 – 2019 trường Nguyễn Đức Cảnh – Thái Bình là bài thi đặc biệt dành cho những học sinh có kiến thức vững chắc và khả năng giải quyết bài toán tốt. Đề thi gồm 20 câu hỏi và bài toán trắc nghiệm (chiếm 6 điểm) và 3 bài toán tự luận (chiếm 4 điểm), thời gian làm bài 90 phút.Một trong những bài toán đặc biệt trong đề thi là về việc 4 người đàn ông cần phải qua một cây cầu trong đêm tối, nhưng chỉ có một cây đuốc. Mỗi lượt chỉ được 2 người qua cầu và thời gian để mỗi người qua cầu không giống nhau (A – 1 phút, B – 2 phút, C – 7 phút, D – 10 phút). Hỏi thời gian ngắn nhất để 4 người qua cầu là bao lâu?Bài toán khác là về việc Bác Thùy muốn trồng đậu và cà trên diện tích 8a. Nếu trồng đậu, cần 20 công và thu lãi 3.000.000 đồng trên mỗi a, trồng cà cần 30 công và thu lãi 4.000.000 đồng trên mỗi a. Biết tổng số công không vượt quá 180, hãy tính số tiền lãi lớn nhất thu được.Ngoài ra, còn có bài toán về hàm số y = f(x) và các hàm số F(x) = 1/2[f(x) + f(-x)] và G(x) = 1/2[f(x) – f(-x)]. Phải xác định đúng những khẳng định nào về tính chất của F(x) và G(x).Đề thi này không chỉ là cơ hội để học sinh thể hiện khả năng giải bài toán mà còn là bước đệm quan trọng để chọn ra những em học sinh giỏi môn Toán vào đội tuyển HSG của trường. Qua đó, giúp các em phát huy tối đa khả năng và tiềm năng của mình trong môn học này.
Đề thi HSG lớp 10 môn Toán năm 2019 cụm trường THPT chuyên DH ĐB Bắc Bộ
Nội dung Đề thi HSG lớp 10 môn Toán năm 2019 cụm trường THPT chuyên DH ĐB Bắc Bộ Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 môn Toán năm 2019 cụm trường THPT chuyên DH ĐB Bắc Bộ Đề thi HSG lớp 10 môn Toán năm 2019 cụm trường THPT chuyên DH ĐB Bắc Bộ Ngày 20 tháng 04 năm 2019, các trường THPT chuyên khu vực Duyên hải và Đồng bằng Bắc Bộ đã tổ chức kỳ thi giao lưu học sinh giỏi Toán lớp 10 lần thứ 12 trong năm học 2018 – 2019. Đề thi HSG Toán lớp 10 năm 2019 cụm trường THPT chuyên DH&ĐB Bắc Bộ được biên soạn theo dạng đề tự luận với 5 bài toán, học sinh được làm bài trong khoảng thời gian 180 phút. Đề thi bao gồm 1 trang, có lời giải chi tiết và thang điểm. Trích dẫn một bài toán từ đề thi: Cho bảng ô vuông kích thước 100 x 100 mà mỗi ô được điền một trong các ký tự A, B, C, D sao cho trên mỗi hàng, mỗi cột của bảng thì số lượng ký tự từng loại đúng bằng 25. Ta gọi hai ô thuộc cùng hàng (không nhất thiết kề nhau) nhưng được điền khác ký tự là “cặp tốt”, còn hình chữ nhật có các cạnh song song với cạnh hoặc nằm trên cạnh của bảng và bốn ô vuông đơn vị ở bốn góc của nó được điền đủ bốn ký tự A, B, C, D là “bảng tốt”. Câu hỏi từ bài toán trên: a) Hỏi trong các cách điền, có bao nhiêu cách điền mà mỗi bảng ô vuông 1 x 4, 4 x 1 và 2 x 2 đều có chứa đủ các ký tự A, B, C, D? b) Chứng minh rằng với mọi cách điền thỏa mãn đề bài thì trên bảng ô vuông đã cho: i) Luôn có 2 cột của bảng mà từ đó có thể chọn ra được 76 cặp tốt. ii) Luôn có một bảng tốt. Đề thi HSG Toán lớp 10 năm 2019 cụm trường THPT chuyên DH&ĐB Bắc Bộ mang đến cho học sinh những thách thức và cơ hội để thể hiện kiến thức và kỹ năng Toán của mình. Qua việc giải quyết các bài toán phức tạp, học sinh được rèn luyện tư duy logic, sự chính xác và sự kiên nhẫn trong quá trình giải quyết vấn đề.
Đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018 2019 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018 2019 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018-2019 sở GD ĐT Vĩnh Phúc Đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018-2019 sở GD ĐT Vĩnh Phúc Ngày 09 tháng 04 năm 2019, sở Giáo dục và Đào tạo Vĩnh Phúc đã tổ chức kỳ thi chọn học sinh giỏi lớp 10 THPT môn Toán năm học 2018-2019. Đề thi được biên soạn theo hình thức tự luận với 10 bài toán, học sinh có thời gian làm bài trong 180 phút. Trích dẫn đề thi chọn HSG Toán lớp 10 THPT năm học 2018-2019 sở GD&ĐT Vĩnh Phúc: + Bài toán 1: Cho tam giác ABC có góc ABC = 60°. Gọi D là giao điểm của đường phân giác trong góc A với cạnh BC, điểm E và F lần lượt là hình chiếu vuông góc của D lên AB, AC. Đặt AB/AC = x, hãy tính tỉ số diện tích S_DEF/S_ABC theo x và tính tỉ số đó khi BD = 8, BC = 10. + Bài toán 2: Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình bình hành ABCD có AC = 2AB, phương trình đường chéo BD: x + y - 1 = 0, điểm B có hoành độ âm. Gọi M là trung điểm cạnh BC và E(3;4) là điểm thuộc đoạn thẳng AC thỏa mãn AC = 4AE. Hãy tìm tọa độ các đỉnh A, B, C, D biết diện tích tam giác DEC bằng 4 và điểm M nằm trên đường thẳng d: 2x + y = 0. + Bài toán 3: Cho a, b thuộc R và a > 0. Xét hai hàm số f(x) = 2x^2 - 4x + 5 và g(x) = x^2 + ax + b. Tìm tất cả các giá trị của a và b biết giá trị nhỏ nhất của g(x) nhỏ hơn giá trị nhỏ nhất của f(x) là 8 đơn vị và đồ thị của hai hàm số trên có đúng một điểm chung. Đây là những bài toán thú vị và đa dạng trong đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018-2019 sở GD ĐT Vĩnh Phúc. Học sinh cần phải áp dụng kiến thức đã học và suy luận logic để giải quyết các bài toán này một cách chính xác và hiệu quả.