Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Số phức trong đề thi THPT môn Toán (2017 - 2020)

Tài liệu gồm 13 trang, tuyển chọn 135 câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Số phức - Trần Đình Cư
giới thiệu đến thầy, cô và các em học sinh khối 12 tài liệu chuyên đề số phức do thầy Trần Đình Cư biên soạn, tài liệu gồm 305 trang cung cấp đầy đủ lý thuyết, dạng toán và bài tập tự luận – trắc nghiệm số phức, tất cả các bài tập trong chuyên đề số phức này đều có đáp án và lời giải chi tiết, ngoài ra chuyên đề còn cung cấp các thủ thuật giải nhanh số phức bằng máy tính cầm tay Casio, giúp học sinh tiết kiệm thời gian giải toán. Chuyên đề số phức bao gồm 10 chủ đề: Chủ đề 1. Các phép toán cơ bản: Gồm các phép toán cộng trừ, nhân chia, nâng lũy thừa, điều kiện bằng nhau của hai số phức. Chủ đề 2. Biểu diễn hình học các số phức. + Cách biểu diễn hình học của số phức z = a + bi (a, b thuộc R) trong mặt phẳng phức. + Biểu diễn hình học của z, -z, z‾: M(z) và M(-z) đối xứng với nhau qua gốc tọa độ, M(z) và M(z‾) đối xứng với nhau qua trục Ox. + Biểu diễn hình học của z + z’, z – z’, kz (k thuộc R). + Với M, A, B lần lượt biểu diễn số phức z, a, b thì: OM = |z|; AB = |b – a|. Chủ đề 3. Tìm tập hợp điểm. + Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện: |z – a| = |z – b|, |z – a| + |z – b| = k. + Giả sử M và M’ lần lượt biểu diễn các số phức z = x + iy và w = f(z) = u + iv, nếu biết một hệ thức giữa x, y ta tìm được một hệ thức giữa u, v và suy ra được tập hợp các điểm M’, nếu biết một hệ thức giữa u, v ta tìm được một hệ thức giữa x, y và suy ra được tập hợp các điểm M. Chủ đề 4. Chứng minh đẳng thức. [ads] Chủ đề 5. Số phức thỏa điều kiện. + Tìm số phức z = x + iy thật ra là tìm phần thực x và phần ảo y của nó. + Trong trường hợp tìm số phức có môđun lớn nhất, nhỏ nhất ta làm như sau: Bước 1: Tìm tập hợp điểm (H) các điểm biểu diễn của z thỏa mãn điều kiện. Bước 2: Tìm số phức z tương ứng với điểm biểu diễn M thuộc (H) sao cho khoảng cách OM có giá trị lớn nhất (hoặc nhỏ nhất). Chủ đề 6. Phương trình số phức. + Bài toán 1. Phương trình quy về phương trình bậc nhất số phức. + Bài toán 2. Căn bậc hai số phức, phương trình bậc hai và phương trình quy về phương trình bậc hai. + Bài toán 3. Phương trình bậc ba. + Bài toán 4. Phương trình bậc bốn số phức. Chủ đề 7. Hệ phương trình số phức. + Giải hệ phương trình số phức bằng định thức. + Ngoài phương pháp định thức trên ta có thể sử dụng phương pháp cộng đại số, phương pháp rút thế. + Ngoài ra ta còn có thể dựa vào tính chất tập hợp điểm số phức để giải và biện luận hệ phương trình. Chủ đề 8. Dạng lượng giác số phức. + Bài toán 1. Viết số phức dưới dạng lượng giác. + Bài toán 2: Áp dụng công thức Moivre để thực hiện các phép tính. + Bài toán 3. Tìm môđun và acgumen của số phức. + Bài toán 4. Áp dụng công thức Moavrơ để tính căn bậc n của số phức. Chủ đề 9. Ứng dụng số phức. + Bài toán 1. Sử dụng số phức vào giải hệ phương trình. + Bài toán 2: Ứng dụng số phức vào chứng minh các công thức, đẳng thức lượng giác. + Bài toán 3: Ứng dụng vào chứng minh bất đẳng thức. + Bài toán 4. Ứng dụng giải toán khai triển hay tính tổng nhị thức Niutơn. + Bài toán 5. Ứng dụng giải toán đa thức và phép chia đa thức. Chủ đề 10. Tuyển chọn 100 bài tập số phức vận dụng và vận dụng bậc cao.
Chuyên đề số phức - Lư Sĩ Pháp
Tài liệu chuyên đề số phức do thầy Lư Sĩ Pháp biên soạn gồm 21 trang giới thiệu phương pháp giải 4 dạng toán số phức thường gặp trong chương trình Giải tích 12 chương 4 và tuyển chọn 121 bài tập trắc nghiệm chuyên đề số phức có đáp án. Lời giới thiệu: Nhằm giúp các em học sinh có tài liệu tự học môn Toán Giải tích 12 chương 4, thầy Lư Sĩ Pháp biên soạn cuốn giải toán số phức trọng tâm dành cho học sinh lớp 12. Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. [ads] Nội dung chuyên đề số phức:  1. Lí thuyết cơ bản về số phức cần nắm ở mỗi bài học. 2. Bài tập số phức có hướng dẫn giải và bài tập tự luyện chọn lọc. 3. Bài tập trắc nghiệm số phức có đáp án. Các dạng toán trong chuyên đề số phức: + Dạng 1. Tìm số phức, số phức liên hợp, phần thực, phần ảo, môđun của một số phức. + Dạng 2. Nhìn vào hệ tọa độ Oxy xác định tọa độ của điểm biểu diễn số phức. + Dạng 3. Tìm tọa độ điểm biểu diễn của số phức trong mặt phẳng tọa độ Oxy. + Dạng 4. Giải phương trình bậc hai trên tập số phức và vận dụng định lí Vi_ét.
Phương pháp giải nhanh bài toán số phức bằng máy tính Casio - Nguyễn Việt Anh
Tài liệu gồm 12 trang hướng dẫn các phương pháp giải nhanh bài toán số phức bằng máy tính Casio – Vinacal kèm theo các bài tập rèn luyện, tài liệu được biên soạn bởi tác giả Nguyễn Việt Anh, đây là các kỹ thuật giải toán mà các em nên tìm hiểu để phát huy tối đa công dụng của máy tính cầm tay trong giải toán số phức, giúp tìm ra hướng giải và tiết kiệm thời gian. A. Các phép tính thông thường, tính moldun, argument, conjg của 1 số phức hay 1 biểu thức số phức và tính số phức có mũ cao. Bài toán tổng quát : Cho Z = z1.z2 – z3.z4/z5. Tìm z và tính modun, argument và số phức liên hợp của số phức Z. Phương pháp giải : + Để máy tính ở chế độ Deg không để dưới dạng Rad và vào chế độ số phức Mode 2. + Khi đó chữ “i” trong phần ảo sẽ là nút “ENG” và ta thực hiện bấm máy như 1 phép tính bình thường. Tính Moldun, Argument và số phức liên hợp của số phức Z: + Moldun: Ấn shift + hyp. Xuất hiện dấu trị tuyệt đối thì ta nhập biểu thức đó vào trong rồi lấy kết quả. + Tính Arg ấn Shift 2 chọn 1. Tính liên hợp ấn shift 2 chọn 2. B. Tìm căn bậc 2, chuyển số phức về dạng lượng giác và ngược lại. 1. Tìm căn bậc 2 của số phức và tính tổng hệ số của căn đó. Bài toán tổng quát : Cho số phức z thỏa mãn z = f(a, bi). Tìm 1 căn bậc 2 của số phức và tính tổng, tích hoặc 1 biểu thức của hệ số. Phương pháp giải : Cách 1: Đối với việc tìm căn bậc 2 của số phức cách nhanh nhất là ta bình phương các đáp án xem đáp án nào trùng số phức đề cho. Cách 2: Không vào chế độ Mode 2. Ta để máy ở chế độ Mode 1. + Ấn shift + sẽ xuất hiện và ta nhập Pol(phần thực, phần ảo). Lưu ý dấu “,” là shift) sau đó ấn =. + Ấn tiếp Shift – sẽ xuất hiện và ta nhập Rec(√X, Y:2) sau đó ấn bằng ta sẽ ra lần lượt là phần thực và phần ảo của số phức. 2. Đưa số phức về dạng lượng giác và ngược lại. Bài toán tổng quát : Tìm dạng lượng giác (bán kính, góc lượng giác) của số phức thỏa mãn z = f(a, bi). Phương pháp giải : + Ấn shift chọn 4 (r < θ) sau khi nhập số phức. + Ấn = sẽ ra kế quả a < b trong đó r = a, góc = b. Chuyển từ lượng giác về số phức: chuyển về radian: + Nhập dạng lượng giác của số phức dưới dạng: bán kính < góc (với < là shift (-)). + Ấn shift 2 chọn 4 (a = bi) và lấy kết quả. 3. Các phép toán cơ bản hoặc tính 1 biểu thức lượng giác của số phức. Làm tương tự như dạng chính tắc của số phức. [ads] C. Phương trình số phức và các bài toán liên quan. 1. Phương trình không chứa tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Phương trình có nghiệm (số nghiệm) là? Phương pháp giải : + Dùng cho máy Vinacal: Mode 2 vào chế độ phức và giải phương trình số phức như phương trình hàm số như bình thường và nhân được nghiệm phức. + Đối với Casio fx: Nhiều phương trình có nghiệm thực nên cách tốt nhất ta sẽ nhập phương trình đề cho vào máy tính và thực hiện Calc đáp án để tìm ra đáp án. 2. Phương trình tìm tham số. Bài toán tổng quát : Cho phương trình az^2 + bz + c = 0. Biết phương trình có nghiệm zi = Ai. Tìm a, b, c. Phương pháp giải : + Mode 2 và lần lượt thay các hệ số ở đáp án vào đề. + Dùng Mode 5 để giải phương trình nếu phương trình nào ra nghiệm như đề cho thì đó là đáp án đúng. D. Tìm số phức thỏa mãn điều kiện phức tạp và tính tổng, tích … hệ số của số phức (Ngoài cách hỏi trên còn có thể hỏi: Tìm phần thực, phần ảo hay modun … của số phức thỏa mãn điều kiện đề bài). Bài toán tổng quát : Cho số phức z = a + bi thỏa mã điều kiện (phức tạp kèm cả liên hợp …). Tìm số phức z? Phương pháp giải : + Nhập điều kiện đề cho vào Casio. Lưu ý thay z = a + bi và liên hợp của z = a – bi. + Calc a = 1000 và b = 100. + Sau khi ra kết quả là : X + Yi ta sẽ phân tích X và Y theo a và b để được 2 phương trình bậc nhất 2 ẩn để giải tìm ra a và b. + Lưu ý: Khi phân tích ưu tiên cho hệ số a nhiều nhất có thể. + Sau khi tìm được a, b ta làm nốt yêu cầu của đề. E. Tìm tập hợp biểu diễn của số phức thỏa mãn điều kiện và hình học số phức. Bài toán tổng quát : Trên mặt phẳng hệ trục tọa độ Oxy tìm tập hợp biểu diễn của số phức z thỏa mã điều kiện. Phương pháp giải : Ưu tiên việc sử dụng 2 máy tính để giải: + Máy thứ 1 ta nhập điều kiện của đề cho với z và liên hợp z dạng tổng quát. + Máy thứ 2 lần lượt các đáp án. Ta lấy 2 điểm thuộc các đáp án. + Calc 2 điểm vừa tìm vào điều kiện. Cái nào kết quả ra 0 thì đấy là đáp án đúng. F. Cặp số (x, y) thỏa mã điều kiện phức, số số phức phù hợp với điều kiện. Phương pháp giải : + Mode 2 và nhập điều kiện đề cho vào Casio, chuyển hết về 1 vế. + Calc các đáp án. Đáp án nào ra kết quả là 0 thì đó là đáp án đúng.
Chuyên đề Số phức - Trung tâm LTĐH Vĩnh Viễn
Tài liệu chuyên đề số phức được biên soạn bởi quý thầy, cô giáo trung tâm luyện thi đại học Vĩnh Viễn, thành phố Hồ Chí Minh gồm 7 trang bao gồm lý thuyết số phức và các bài toán số phức được trích từ các đề tuyển sinh Cao đẳng – Đại học có lời giải chi tiết. Nội dung tài liệu gồm 2 phần: Phần A . Lý thuyết số phức cần nắm vững: Gồm các nội dung: 1. Định nghĩa số phức. 2. Môđun của số phức. 3. Biểu diễn hình học của số phức trên mặt phẳng tọa độ Oxy. 4. Dạng lượng giác của số phức. 5. Các phép toán về số phức. 6. Lũy thừa số phức. 7. Căn bậc n của số phức. Phần B . Bài tập: Trích dẫn 22 bài toán số phức trong đề thi THPT môn Toán, đề tuyển sinh Cao đẳng – Đại học môn Toán các năm trước (từ năm 2009 đến năm 2011), các bài toán đều có lời giải chi tiết. Tài liệu giúp quý thầy, cô tham khảo và giúp các em học sinh khối 12 học tốt chủ đề số phức thuộc chương trình Giải tích 12 chương 4. [ads]