Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập phương trình đường thẳng trong không gian Toán 12 CTST

Nguồn: toanmath.com

Đọc Sách

Các dạng toán phương trình đường thẳng và một số bài toán liên quan
Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình đường thẳng và một số bài toán liên quan đến phương trình đường thẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình đường thẳng và một số bài toán liên quan: PHẦN A . CÂU HỎI Dạng toán 1. Xác định VTCP (Trang 2). Dạng toán 2. Xác định phương trình đường thẳng (Trang 4). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 4). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 6). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 10). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 11). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 14). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 14). + Dạng toán 3.2 Bài toán cực trị (Trang 17). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 19). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 19). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 20). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 22). + Dạng toán 4.4 Bài toán cực trị (Trang 25). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 30). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 32). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 32). + Dạng toán 7.1 Bài toán tìm điểm (Trang 32). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 34). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 34). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 35). + Dạng toán 7.5 Bài toán cực trị (Trang 37). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTCP (Trang 40). Dạng toán 2. Xác định phương trình đường thẳng (Trang 41). + Dạng toán 2.1 Xác định phương trình đường thẳng cơ bản (Trang 41). + Dạng toán 2.2 Xác định phương trình đường thẳng khi biết yếu tố vuông góc (Trang 43). + Dạng toán 2.3 Xác định phương trình đường thẳng khi biết yếu tố song song (Trang 48). + Dạng toán 2.4 Xác định một số phương trình đường thẳng đặc biệt (phân giác, trung tuyến…) (Trang 50). Dạng toán 3. Một số bài toán liên quan giữa điểm với đường thẳng (Trang 58). + Dạng toán 3.1 Bài toán liên quan điểm (hình chiếu) thuộc đường, khoảng cách (Trang 58). + Dạng toán 3.2 Bài toán cực trị (Trang 61). Dạng toán 4. Một số bài toán liên quan giữa đường thẳng với mặt phẳng (Trang 65). + Dạng toán 4.1 Bài toán liên quan khoảng cách, góc (Trang 65). + Dạng toán 4.2 Bài toán phương trình mặt phẳng, giao tuyến 2 mặt phẳng (Trang 67). + Dạng toán 4.3 Bài toán giao điểm (hình chiếu, đối xứng) của đường thẳng với mặt phẳng (Trang 69). + Dạng toán 4.4 Bài toán cực trị (Trang 78). Dạng toán 5. Một số bài toán liên quan giữa đường thẳng thẳng với đường thẳng (Trang 95). Dạng toán 6. Một số bài toán liên quan giữa đường thẳng với mặt cầu (Trang 97). Dạng toán 7. Một số bài toán liên quan giữa điểm – mặt – đường – cầu (Trang 99). + Dạng toán 7.1 Bài toán tìm điểm (Trang 99). + Dạng toán 7.2 Bài toán tìm mặt phẳng (Trang 102). + Dạng toán 7.3 Bài toán tìm đường thẳng (Trang 104). + Dạng toán 7.4 Bài toán tìm mặt cầu (Trang 106). + Dạng toán 7.5 Bài toán cực trị (Trang 112).
Các dạng toán phương trình mặt phẳng và một số bài toán liên quan
Trong quá trình luyện tập với các đề thi thử THPT Quốc gia môn Toán, chắc chắn không ít lần các em bắt gặp các bài toán về chủ đề phương trình mặt phẳng và một số bài toán liên quan đến phương trình mặt phẳng, bởi đây là một nội dung quan trọng của chương trình Toán 12 và chương trình Toán THPT nói chung. Nhằm giúp các em học sinh khối 12 có thể tự ôn tập theo các chuyên đề riêng biệt, thầy Nguyễn Bảo Vương đã tổng hợp và biên soạn tài liệu các dạng toán phương trình mặt phẳng và một số bài toán liên quan, với các bài toán được phân loại theo từng dạng toán cụ thể, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mặt phẳng và một số bài toán liên quan: Phần A . CÂU HỎI Dạng toán 1. Xác định VTPT (Trang 2). Dạng toán 2. Xác định phương trình mặt phẳng (Trang 3). + Dạng toán 2.1 Xác định phương trình mặt phẳng cơ bản (Trang 3). + Dạng toán 2.2 Xác định phương trình mặt phẳng khi biết yếu tố vuông góc (Trang 4). + Dạng toán 2.3 Xác định phương trình mặt phẳng khi biết yếu tố song song (Trang 7). + Dạng toán 2.4 Xác định phương trình mặt phẳng đoạn chắn (Trang 8). Dạng toán 3. Một số bài toán liên quan điểm với mặt phẳng (Trang 10). + Dạng toán 3.1 Điểm thuộc mặt phẳng (Trang 10). + Dạng toán 3.2 Phương trình mặt phẳng qua 3 điểm (Trang 11). + Dạng toán 3.3 Khoảng cách từ điểm đến mặt (Trang 11). + Dạng toán 3.4 Cực trị (Trang 13). Dạng toán 4. Một số bài toán liên quan giữa mặt phẳng – mặt cầu (Trang 16). + Dạng toán 4.1 Viết phương trình mặt cầu (Trang 16). + Dạng toán 4.2 Vị trí tương đối, giao tuyến (Trang 17). + Dạng toán 4.3 Cực trị (Trang 20). Dạng toán 5. Một số bài toán liên quan giữa mặt phẳng – mặt phẳng (Trang 21). + Dạng toán 5.1 Vị trí tương đối, khoảng cách, giao tuyến (Trang 21). + Dạng toán 5.2 Góc của 2 mặt phẳng (Trang 23). Dạng toán 6. Một số bài toán liên khác quan điểm – mặt phẳng – mặt cầu (Trang 24). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng toán 1. Xác định VTPT (Trang 26). Dạng toán 2. Xác định phương trình mặt phẳng (Trang 27). + Dạng toán 2.1 Xác định phương trình mặt phẳng cơ bản (Trang 27). + Dạng toán 2.2 Xác định phương trình mặt phẳng khi biết yếu tố vuông góc (Trang 27). + Dạng toán 2.3 Xác định phương trình mặt phẳng khi biết yếu tố song song (Trang 31). + Dạng toán 2.4 Xác định phương trình mặt phẳng đoạn chắn (Trang 33). Dạng toán 3. Một số bài toán liên quan điểm với mặt phẳng (Trang 36). + Dạng toán 3.1 Điểm thuộc mặt phẳng (Trang 36). + Dạng toán 3.2 Phương trình mặt phẳng qua 3 điểm (Trang 37). + Dạng toán 3.3 Khoảng cách từ điểm đến mặt (Trang 38). + Dạng toán 3.4 Cực trị (Trang 39). Dạng toán 4. Một số bài toán liên quan giữa mặt phẳng – mặt cầu (Trang 47). + Dạng toán 4.1 Viết phương trình mặt cầu (Trang 47). + Dạng toán 4.2 Vị trí tương đối, giao tuyến (Trang 48). + Dạng toán 4.3 Cực trị (Trang 52). Dạng toán 5. Một số bài toán liên quan giữa mặt phẳng – mặt phẳng (Trang 57). + Dạng toán 5.1 Vị trí tương đối, khoảng cách, giao tuyến (Trang 57). + Dạng toán 5.2 Góc của 2 mặt phẳng (Trang 59). Dạng toán 6. Một số bài toán liên khác quan điểm – mặt phẳng – mặt cầu (Trang 61).
Các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp
Chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu là chủ đề đầu tiên mà các em học sinh được học khi tìm hiểu chương trình Hình học 12 chương 3, đây là nội dung căn bản mà các em cần nắm vững trước khi tìm hiểu những kiến thức cao hơn. Trong đề thi THPT Quốc gia môn Toán, các câu hỏi và bài tập trắc nghiệm thuộc chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu được bắt gặp thường xuyên, các bài toán trải rộng ở nhiều mức độ nhận biết, thông hiểu, vận dụng và vận dụng bậc cao. Và để giúp các em có tài liệu tham khảo, rèn luyện, thầy Nguyễn Bảo Vương biên soạn và giới thiệu tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp. Tài liệu gồm 46 trang với các câu hỏi và bài toán trắc nghiệm hệ trục tọa độ Oxyz và phương trình mặt cầu có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên toàn quốc. Mục lục tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp: PHẦN A . CÂU HỎI Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxyz (Trang 1). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 8). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 8). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 9). Dạng toán 3. Mặt cầu (Trang 10). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 10). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 13). + Dạng toán 3.3 Một số bài toán khác (Trang 16). Dạng toán 4. Bài toán cực trị (Trang 17). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxy (Trang 19). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 27). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 27). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 28). Dạng toán 3. Mặt cầu (Trang 31). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 31). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 34). + Dạng toán 3.3 Một số bài toán khác (Trang 37). Dạng toán 4. Bài toán cực trị (Trang 42 ).
Phương pháp tọa độ hóa hình không gian
Tài liệu gồm 51 trang hướng dẫn sử dụng phương pháp tọa độ hóa để giải bài toán hình học không gian cổ điển, tài liệu được biên soạn bởi nhóm tác giả Tạp chí và Tư liệu Toán học. Khái quát tài liệu phương pháp tọa độ hóa hình không gian : Đôi khi trong giải toán hình học không gian cổ điển ta sẽ gặp khá nhiều bài toán tính toán phức tạp, tuy nhiên trong phòng thi ta lại không có nhiều thời gian, vì thế trong chương này chúng ta sẽ tìm hiểu một phương pháp giải quyết nhanh các bài toán tính toán phức tạp và khó trong hình không gian cổ điển, liên quan tới cực trị, góc, khoảng cách. I. Ý TƯỞNG . PHƯƠNG PHÁP: Trên mạng có một vài tài liệu nói về phương pháp này và chia thành rất nhiều dạng, điều đó làm chúng ta khi áp dụng có phần khó nhớ và máy móc, tuy nhiên chúng ta chỉ cần nắm được dấu hiệu và phương pháp sau: + Bước 1 . Chọn hệ trục tọa độ. Trong bước này ta sẽ xác định 3 đường vuông góc có trong bài toán và gọi đó là 3 đường cơ sở. Thông thường thì ta sẽ quy ước trục Ox hướng vào mình, trục Oz nằm ngang, còn lại là trục Oy. [ads] + Bước 2 . Xác định tọa độ các điểm liên trên hình liên quan tới bài toán. Với những bạn chưa quen thì chúng ta xác định tọa độ hình chiếu của điểm cần tìm lên các trục, từ đó sẽ suy ra được tọa độ điểm cần tính. + Bước 3 . Áp dụng công thức. Sau đây chúng ta sẽ nhắc lại một số công thức cần nhớ trong phần này: + Diện tích và thể tích: Diện tích tam giác, Thể tích tứ diện, Thể tích hình hộp, Thể tích hình lăng trụ. + Góc: Góc giữa 2 mặt phẳng, Góc giữa 2 đường thẳng, Góc giữa đường thẳng và mặt phẳng. + Khoảng cách:  Khoảng cách từ điểm đến mặt phẳng, Khoảng cách từ một điểm đến 1 đường thẳng, Khoảng cách giữa hai đường thẳng chéo nhau. Chú ý . Thông thường các bài mà không có 3 đường vuông góc thì ta sẽ phải tự dựng thêm để gắn tọa độ và những bài liên quan tới hình lập phương, hình hộp chữ nhật, chối chóp có 3 đường vuông góc, lăng trụ đứng thì khi áp dụng phương pháp này sẽ giải rất nhanh. II. CÁC BÀI TOÁN : Tuyển chọn 59 bài toán hình học không gian cổ điển được giải bằng phương pháp tọa độ hóa.