Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Quốc học Huế

Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế có tổng cộng 5 bài toán dạng tự luận, được biên soạn trên 2 trang giấy. Thời gian làm bài thi là 150 phút, và kỳ thi được tổ chức vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn một số câu hỏi từ đề thi: + Trên mặt phẳng tọa độ Oxy, cho đường thẳng \( (d) : y = mx+ 4 \) (với \( m \neq 0 \)) và parabol \( (P) : y = 2x^2 \). Gọi A, B là các điểm giao của \( (d) \) và \( (P) \); A0 và B0 lần lượt là hình chiếu vuông góc của A và B lên trục hoành. Tìm giá trị của \( m \) để diện tích tứ giác ABB0A0 bằng 15 cm2. + Chứng minh phương trình \( x^2 - (m^2 - 1) x + m(m - 1)^2 = 0 \) luôn có nghiệm với mọi giá trị của \( m \). Tìm giá trị của \( m \) sao cho nghiệm lớn nhất của phương trình đạt giá trị nhỏ nhất. + Cho hai đường tròn \( (O) \) và \( (O0) \) cắt nhau tại hai điểm A và B, với điểm O nằm ngoài đường tròn \( (O0) \). Từ một điểm M trên tia đối của tia AB, vẽ các tiếp tuyến MC, MD với đường tròn \( (O) \) (C, D là các tiếp điểm và D nằm trong đường tròn \( (O0) \)). Hai đường thẳng AC và AD cắt đường tròn \( (O0) \) lần lượt tại E và F, với E và F không trùng với A. Hai đường thẳng CD và EF cắt nhau tại I. Câu hỏi được chia thành 3 phần: Chứng minh tứ giác BCEI là tứ giác nội tiếp, và \( EI \cdot BD = BI \cdot AD \). Chứng minh rằng I là trung điểm của đoạn thẳng EF. Chứng minh rằng khi M thay đổi trên tia đối của tia AB, đường thẳng CD luôn đi qua một điểm cố định. Đề thi này đòi hỏi sự logic, khả năng suy luận và phân tích của thí sinh để giải quyết các bài toán phức tạp một cách chính xác và hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hà Nội : + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Ba đường cao AD, BE và CF của tam giác ABC cùng đi qua điểm H. Đường thẳng EF cắt đường thẳng AD tại điểm Q. Gọi M và I lần lượt là trung điểm của các đoạn thẳng BC và AH. Đường thẳng IM cắt đường thẳng EF tại điểm K. 1) Chứng minh rằng tam giác AEK đồng dạng với tam giác ABM. 2) Đường thẳng EF cắt đường thẳng BC tại điểm S, đường thẳng SI cắt đường thẳng MQ tại điểm T. Chứng minh rằng bốn điểm A, T, H và M cùng thuộc một đường tròn. 3) Tia T H cắt đường tròn (O) tại điểm P. Chứng minh rằng ba điểm A, K và P thẳng hàng. + Cho 2023 điểm nằm trong một hình vuông cạnh 1. Một tam giác đều được gọi là phủ điểm M nếu điểm M nằm trong tam giác hoặc nằm trên cạnh của tam giác. 1) Chứng minh tồn tại tam giác đều cạnh 1/√2 phủ ít nhất 253 điểm trong 2023 điểm đã cho. 2) Chứng minh tồn tại tam giác đều cạnh 11 12 phủ ít nhất 506 điểm trong 2023 điểm đã cho. + Trên bàn có hai túi kẹo: túi thứ nhất có 18 viên kẹo, túi thứ hai có 21 viên kẹo. An và Bình cùng chơi một trò chơi như sau: mỗi lượt chơi, một bạn sẽ lấy đi 1 viên kẹo từ một túi bất kỳ hoặc là mỗi túi lấy đi 1 viên kẹo. Hai bạn luân phiên thực hiện lượt chơi của mình. Người đầu tiên không thể thực hiện được lượt chơi của mình là người thua cuộc, người còn lại là người thắng cuộc. Nếu An là người lấy kẹo trước, hãy chỉ ra chiến thuật chơi của An để An là người thắng cuộc.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức (y + 2)x2 + 1 = y2. Tìm tất cả các số nguyên dương n sao cho 3n + 1, 11n + 1 là các số chính phương và n + 3 là số nguyên tố. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Đường thẳng AO cắt đường thẳng BC tại điểm E. Gọi M là trung điểm của đoạn thẳng BC. Đường thẳng AM cắt đường tròn (O) tại điểm N (N khác A). Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm D. a) Chứng minh AOND là tứ giác nội tiếp và tia DO là phân giác của góc ADN. b) Đường thẳng AD cắt đường tròn (O) tại điểm P (P khác A). Đường tròn ngoại tiếp tam giác AME cắt đường tròn (O) tại điểm F (F khác A). Chứng minh AB.PC = AC.PB và ba điểm E, F, P thẳng hàng. c) Kẻ đường kính AK của đường tròn (O). Chứng minh ba điểm D, K, F thẳng hàng và đường thẳng FN đi qua trung điểm của đoạn thẳng DM. + Sau khi tổ chức một trận đấu giao hữu giữa hai đội bóng lớp 9A và 9B, Ban tổ chức có 11 gói kẹo muốn chia cho 2 đội. Mỗi đội được chia 5 gói làm phần thưởng và 1 gói Ban tổ chức giữ lại để liên hoan. Biết rằng dù chọn bất kì gói nào để giữ lại, Ban tổ chức luôn có thể chia 10 gói còn lại cho 2 đội mà tổng số viên kẹo trong 5 gói cho mỗi đội là bằng nhau. Chứng minh rằng 11 gói kẹo đó phải có số viên kẹo bằng nhau.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Sóc Trăng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Trường Trung học phổ thông H dự định tổ chức cho 315 học sinh về nguồn tại Di tích khu căn cứ Tỉnh ủy thuộc địa phận xã Mỹ Phước, huyện Mỹ Tú, tỉnh Sóc Trăng. Nếu dùng loại xe nhỏ chở một lượt hết số học sinh thì phải hợp đồng nhiều hơn khi dùng loại xe lớn là 2 chiếc, biết rằng loại xe nhỏ mỗi xe chở ít hơn loại xe lớn là 10 học sinh. Tính số xe nhỏ mà Trường Trung học phổ thông H cần hợp đồng (Biết rằng số học sinh được chở trên mỗi xe là như nhau). + Yêu cầu vẽ hình khi chứng minh: Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Các đường cao BE, CF cắt nhau tại H. a) Chứng minh AF.AB = AE.AC. b) Giả sử BAC = 60°, AB = 3 cm, AC = 4 cm. Tính diện tích tam giác ABC và diện tích tam giác AEF. c) Gọi M là trung điểm BC, tia MH cắt đường tròn (O) tại T, đường tròn ngoại tiếp tam giác BMF cắt đường thẳng AM tại điểm thứ hai là Q. Chứng minh rằng 6 điểm A, T, F, H, Q, E cùng nằm trên đường tròn. + Hai người cùng chơi trò chơi, khi bắt đầu chơi cả hai người chơi đều 0 điểm. Sau mỗi ván chơi người thắng được 2 điểm, người thua được 0 điểm; nếu hoà thì mỗi người chơi cùng được 1 điểm. Hỏi sau một số ván chơi có thể xảy ra trường hợp một người được 20 điểm và người kia được 23 điểm không? Giải thích?
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 trường THPT chuyên ĐH Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 trường THPT chuyên Đại học Vinh, tỉnh Nghệ An. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 trường THPT chuyên ĐH Vinh – Nghệ An : + Cho đa thức P(x) = x2 + bx + c có hai nghiệm nguyên. Biết rằng |c| =< 16 và |P(9)| là số nguyên tố. Tìm các hệ số b, c. + Cho đường tròn (O) đường kính AB. Đường thẳng ∆ tiếp xúc với (O) tại A, I là điểm cố định trên đoạn AB và CD là dây cung thay đổi của (O) luôn đi qua I. Các đường thẳng BC, BD cắt ∆ lần lượt tại M, N. a) Chứng minh rằng CDNM là tứ giác nội tiếp. b) Gọi K là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BMN với đường thẳng AB. Chứng minh rằng KMCI là tứ giác nội tiếp và tích AM · AN không đổi. c) Gọi T là tâm đường tròn ngoại tiếp tứ giác CDNM. Tìm vị trí của CD sao cho độ dài đoạn thẳng BT nhỏ nhất. + Gọi M là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau. Tìm số nguyên dương k lớn nhất để tồn tại tập hợp con A có k phần tử của tập hợp M sao cho tích của A số bất kì thuộc tập hợp A đều chia hết cho 3.