Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục điểm 8 - 9 - 10 bài tập trắc nghiệm Giải tích

Cuốn sách Chinh phục điểm 8 – 9 – 10 bài tập trắc nghiệm Giải tích gồm 338 trang được biên soạn bởi các tác giả Mẫn Ngọc Quang, Đỗ Xuân Sỹ, Phạm Minh Tuấn nhằm mục đích giúp các em học sinh làm quen và luyện tập các dạng toán vận dụng cao thường gặp trong đề thi THPT Quốc gia môn Toán. Nội dung sách gồm 8 phần : Phần 1 . Hàm số nâng cao + Công thức giải nhanh hàm trùng phương + Công thức giải nhanh khoảng cách hai điểm giao của hàm bậc nhất với đường thẳng + Đường thẳng đi qua hai điểm cực trị của hàm bậc ba + Chứng minh các công thức của hàm trùng phương + Mẹo Casio + Bài toán đơn điệu có tham số m + Cực trị + Tiệm cận hàm số + Giá trị lớn nhất, giá trị nhỏ nhất + Biện luận phương trình có tham số dựa vào GTLN – GTNN (giá trị lớn nhất – giá trị nhỏ nhất) +  Bài toán suy luận từ đồ thị + Khoảng cách + Diện tích – tính chất tam giác + Bài toán tổng hợp Phần 2 . Bài toán thực tế + Bài toán tối ưu kinh doanh + Bài toán cho trước hàm số + Khoảng cách – Pytago, tối ưu chuyển động [ads] Phần 3 . Mũ và logarit nâng cao + Casio để giải các bài toán logarit + Công thức logarit + Các bài toán nâng cao + Phương trình, bất phương trình mũ + Bài toán ngân hàng, bài toán lãi suất + Bài toán so sánh thu nhập khi làm việc ở hai công ty khác nhau + Bài toán về công thức logarit: động đất, tăng trưởng dân số + Bài toán hạt nhân nguyên tử + Cường độ sáng + Tổng hợp Phần 4 . Tích phân ứng dụng + Ứng dụng Casio trong tính tích phân + Sử dụng Casio để tính tích phân có trị tuyệt đối + Các kỹ thuật tính tích phân + Diện tích – Thể tích + Toán chuyển động Phần 5 . Biểu thức tổ hợp, nhị thức Newton Phần 6 . Sử dụng cho số phức + Công thức + Tính môđun lớn nhất và nhỏ nhất + Bài toán sử dụng kỹ thuật chuẩn hóa phương pháp chuẩn hóa trong số phức Phần 7 . Các bài toán xác suất luyện tập nâng cao Phần 8 . Bài toán biện luận tính liên tục của hàm số 

Nguồn: toanmath.com

Đọc Sách

Bài tập ôn chương phương pháp tọa độ trong không gian - Võ Thành Lâm
Tài liệu gồm 19 trang tuyển chọn các bài tập ôn chương phương pháp tọa độ trong không gian ôn thi học kỳ 2 Toán 12. 1. Hệ trục tọa độ oxyz – phương trình mặt cầu 2. Phương trình mặt phẳng 3. Phương trình đường thẳng 4. Hình chiếu – đối xứng – góc – khoảng cách 5. Vị trí tương đối [ads]
Bài tập trắc nghiệm ôn tập chương phương pháp tọa độ trong không gian - Nguyễn Tấn Phong
Tài liệu gồm 25 trang với tóm tắt lý thuyết, công thức tính toán và bài tập ôn tập chương phương pháp tọa độ trong không gian. Tọa độ điểm – tọa độ vectơ I. Hệ trục tọa độ oxyz II. Tọa độ vectơ Một số ứng dụng và công thức: 1. Chứng minh 3 điểm a,b,c thẳng hàng; không thẳng hàng 2. D là đỉnh hình bình hành ABCD ⇔ vtAD = vtBC 3. Diện tích hình bình hành ABCD 4. Diện tích tam giác ABC 5. Chứng minh 4 điểm a, b, c, d đồng phẳng, không đồng phẳng 6. Thể tích tứ diện ABCD 7. Thể tích hình hộp ABCD.A’B’C’D’ Khoảng cách 8. Khoảng cách giữa 2 điểm A,B (độ dài đoạn thẳng AB) 9. Khoảng cách từ một điểm đến mặt phẳng 10. Khoảng cách từ điểm đến đường thẳng 11. Khoảng cách giữa 2 đường thẳng chéo nhau [ads] Công thức góc 12. Góc giữa 2 vectơ 13. Góc giữa 2 mặt phẳng 14. Góc giữa 2 đường thẳng 15. Góc giữa đường thẳng; mặt phẳng; phương trình mặt cầu I. Phương trình mặt cầu II. Vị trí tương đối giữa mặt phẳng và mặt cầu Phương trình mặt phẳng 1. Vectơ pháp tuyến 2. Phương trình tổng quát của mặt phẳng 3. Các trường hợp đặc biệt của phương trình mặt phẳng 4. Vị trí tương đối giữa 2 mặt phẳng Phương trình đường thẳng 1. Vectơ chỉ phương 2. Phương trình tham số của đường thẳng 3. Phương trình chính tắc của đường thẳng 4. Vị trí tương đối giữa 2 đường thẳng 4. Vị trí tương đối giữa đường thẳng và mặt phẳng
Các dạng bài tập phương trình đường thằng trong không gian - Đặng Ngọc Hiền, Lê Bá Bảo
Tài liệu gồm lý thuyết, phân dạng, hướng dẫn giải, ví dụ minh họa có lời giải chi tiết và bài tập trắc nghiệm có đáp án chủ đề phương trình đường thẳng trong không gian. Các dạng toán trong tài liệu: + Dạng 1: Xác định vectơ chỉ phương của đường thẳng + Dạng 2: Lập phương trình đường thẳng + Dạng 3: Xét vị trí tương đối của hai đường thẳng + Dạng 4: Vị trí tương đối của đường thẳng và mặt phẳng [ads] + Dạng 5: Hình chiếu của một điểm lên một đường thẳng + Dạng 6: Hình chiếu của một điểm lên một mặt phẳng + Dạng 7: Khoảng cách từ điểm đến đường thẳng. Khoảng cách giữa hai đường thẳng chéo nhau + Dạng 8: Góc giữa hai đường thẳng. Góc giữa đường thẳng và mặt phẳng
Bài tập trắc nghiệm hình học Oxyz - Huỳnh Văn Lượng
Tài liệu gồm 28 trang với phần tóm tắt lý thuyết, công thức và bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian. Trích dẫn tài liệu : + Cho mặt phẳng (α): 4x – 2y + 3z + 1 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2z + 4y + 6z = 0. Khi đó, mệnh đề nào sau đây là một mệnh đề sai: A. (α) cắt (S) theo một đường tròn B. (α) tiếp xúc với (S) C. (α) có điểm chung với (S) D. (α) đi qua tâm của (S) [ads] + Cho điểm M(–3; 2; 4), gọi A, B, C lần lượt là hình chiếu của M trên Ox, Oy, Oz. Mặt phẳng song song với mp(ABC) có phương trình là: A. 4x – 6y –3z + 12 = 0 B. 3x – 6y –4z + 12 = 0 C. 6x – 4y –3z – 12 = 0 D. 4x – 6y –3z – 12 = 0 Trong không gian với hệ trục toạ độ Oxyz cho các điểm A (1;0;0), B (0;2;0), C (0;0;3), D (1;2;0). Viết phương trình mặt phẳng (DA’B’) với A’, B’ là 2 đỉnh của hình hộp chữ nhật OADB.CA’D’B’. A. 6x + 3y + z – 12 = 0 B. 6x + 3y – z – 12 = 0 C .6x – 3y + z – 12 = 0 D. 6x – 3y – z + 12 = 0